Suppr超能文献

基于变压器的阿尔茨海默病评估统一多模态框架。

A transformer-based unified multimodal framework for Alzheimer's disease assessment.

机构信息

Department of Big Data in Health Science, School of Public Health and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

School of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, Jilin, China.

出版信息

Comput Biol Med. 2024 Sep;180:108979. doi: 10.1016/j.compbiomed.2024.108979. Epub 2024 Aug 3.

Abstract

In Alzheimer's disease (AD) assessment, traditional deep learning approaches have often employed separate methodologies to handle the diverse modalities of input data. Recognizing the critical need for a cohesive and interconnected analytical framework, we propose the AD-Transformer, a novel transformer-based unified deep learning model. This innovative framework seamlessly integrates structural magnetic resonance imaging (sMRI), clinical, and genetic data from the extensive Alzheimer's Disease Neuroimaging Initiative (ADNI) database, encompassing 1651 subjects. By employing a Patch-CNN block, the AD-Transformer efficiently transforms image data into image tokens, while a linear projection layer adeptly converts non-image data into corresponding tokens. As the core, a transformer block learns comprehensive representations of the input data, capturing the intricate interplay between modalities. The AD-Transformer sets a new benchmark in AD diagnosis and Mild Cognitive Impairment (MCI) conversion prediction, achieving remarkable average area under curve (AUC) values of 0.993 and 0.845, respectively, surpassing those of traditional image-only models and non-unified multimodal models. Our experimental results confirmed the potential of the AD-Transformer as a potent tool in AD diagnosis and MCI conversion prediction. By providing a unified framework that jointly learns holistic representations of both image and non-image data, the AD-Transformer paves the way for more effective and precise clinical assessments, offering a clinically adaptable strategy for leveraging diverse data modalities in the battle against AD.

摘要

在阿尔茨海默病(AD)评估中,传统的深度学习方法通常采用单独的方法来处理输入数据的多种模态。鉴于对一个有凝聚力和相互关联的分析框架的迫切需求,我们提出了 AD-Transformer,这是一种基于变压器的新型统一深度学习模型。这个创新的框架无缝地整合了来自广泛的阿尔茨海默病神经影像学倡议(ADNI)数据库的结构磁共振成像(sMRI)、临床和遗传数据,包含 1651 个样本。通过使用 Patch-CNN 块,AD-Transformer 有效地将图像数据转换为图像令牌,而线性投影层则巧妙地将非图像数据转换为相应的令牌。作为核心,变压器块学习输入数据的综合表示,捕捉模态之间的复杂相互作用。AD-Transformer 在 AD 诊断和轻度认知障碍(MCI)转化预测方面设定了新的基准,分别达到了令人瞩目的平均曲线下面积(AUC)值 0.993 和 0.845,超过了传统的仅图像模型和非统一多模态模型。我们的实验结果证实了 AD-Transformer 作为 AD 诊断和 MCI 转化预测的有力工具的潜力。通过提供一个联合学习图像和非图像数据整体表示的统一框架,AD-Transformer 为更有效和精确的临床评估铺平了道路,为在对抗 AD 的过程中利用多种数据模态提供了一种临床适应性策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验