Suppr超能文献

在边界内思考:通过使用常见贴现函数的贝塔回归改进无差异点数据分析与模拟中的误差分布

Thinking Inside the Bounds: Improved Error Distributions for Indifference Point Data Analysis and Simulation Via Beta Regression using Common Discounting Functions.

作者信息

Kim Mingang, Koffarnus Mikhail N, Franck Christopher T

机构信息

Virginia Tech, Blacksburg, VA 24061 United States.

University of Kentucky, Lexington, KY 40504 United States.

出版信息

Perspect Behav Sci. 2024 Jun 4;47(2):417-433. doi: 10.1007/s40614-024-00410-8. eCollection 2024 Jun.

Abstract

Standard nonlinear regression is commonly used when modeling indifference points due to its ability to closely follow observed data, resulting in a good model fit. However, standard nonlinear regression currently lacks a reasonable distribution-based framework for indifference points, which limits its ability to adequately describe the inherent variability in the data. Software commonly assumes data follow a normal distribution with constant variance. However, typical indifference points do not follow a normal distribution or exhibit constant variance. To address these limitations, this paper introduces a class of nonlinear beta regression models that offers excellent fit to discounting data and enhances simulation-based approaches. This beta regression model can accommodate popular discounting functions. This work proposes three specific advances. First, our model automatically captures non-constant variance as a function of delay. Second, our model improves simulation-based approaches since it obeys the natural boundaries of observable data, unlike the ordinary assumption of normal residuals and constant variance. Finally, we introduce a scale-location-truncation trick that allows beta regression to accommodate observed values of 0 and 1. A comparison between beta regression and standard nonlinear regression reveals close agreement in the estimated discounting rate k obtained from both methods.

摘要

在对无差异点进行建模时,标准非线性回归因其能够紧密拟合观测数据而被广泛使用,从而实现良好的模型拟合。然而,标准非线性回归目前缺乏一个基于合理分布的无差异点框架,这限制了其充分描述数据固有变异性的能力。软件通常假设数据服从具有恒定方差的正态分布。然而,典型的无差异点并不服从正态分布,也不表现出恒定方差。为了解决这些局限性,本文引入了一类非线性贝塔回归模型,该模型能很好地拟合贴现数据并改进基于模拟的方法。这种贝塔回归模型可以容纳常见的贴现函数。这项工作提出了三个具体进展。首先,我们的模型能自动捕捉随延迟变化的非恒定方差。其次,我们的模型改进了基于模拟的方法,因为它遵循可观测数据的自然边界,这与正态残差和恒定方差的普通假设不同。最后,我们引入了一种尺度-位置-截断技巧,使贝塔回归能够处理观测值为0和1的情况。贝塔回归与标准非线性回归之间的比较表明,两种方法获得的估计贴现率k非常接近。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b78/11294315/c04af8be3d9a/40614_2024_410_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验