Kim Mingang, Koffarnus Mikhail N, Franck Christopher T
Virginia Tech, Blacksburg, VA 24061 United States.
University of Kentucky, Lexington, KY 40504 United States.
Perspect Behav Sci. 2024 Jun 4;47(2):417-433. doi: 10.1007/s40614-024-00410-8. eCollection 2024 Jun.
Standard nonlinear regression is commonly used when modeling indifference points due to its ability to closely follow observed data, resulting in a good model fit. However, standard nonlinear regression currently lacks a reasonable distribution-based framework for indifference points, which limits its ability to adequately describe the inherent variability in the data. Software commonly assumes data follow a normal distribution with constant variance. However, typical indifference points do not follow a normal distribution or exhibit constant variance. To address these limitations, this paper introduces a class of nonlinear beta regression models that offers excellent fit to discounting data and enhances simulation-based approaches. This beta regression model can accommodate popular discounting functions. This work proposes three specific advances. First, our model automatically captures non-constant variance as a function of delay. Second, our model improves simulation-based approaches since it obeys the natural boundaries of observable data, unlike the ordinary assumption of normal residuals and constant variance. Finally, we introduce a scale-location-truncation trick that allows beta regression to accommodate observed values of 0 and 1. A comparison between beta regression and standard nonlinear regression reveals close agreement in the estimated discounting rate k obtained from both methods.
在对无差异点进行建模时,标准非线性回归因其能够紧密拟合观测数据而被广泛使用,从而实现良好的模型拟合。然而,标准非线性回归目前缺乏一个基于合理分布的无差异点框架,这限制了其充分描述数据固有变异性的能力。软件通常假设数据服从具有恒定方差的正态分布。然而,典型的无差异点并不服从正态分布,也不表现出恒定方差。为了解决这些局限性,本文引入了一类非线性贝塔回归模型,该模型能很好地拟合贴现数据并改进基于模拟的方法。这种贝塔回归模型可以容纳常见的贴现函数。这项工作提出了三个具体进展。首先,我们的模型能自动捕捉随延迟变化的非恒定方差。其次,我们的模型改进了基于模拟的方法,因为它遵循可观测数据的自然边界,这与正态残差和恒定方差的普通假设不同。最后,我们引入了一种尺度-位置-截断技巧,使贝塔回归能够处理观测值为0和1的情况。贝塔回归与标准非线性回归之间的比较表明,两种方法获得的估计贴现率k非常接近。