Deb Smita, Mahendru Ekansh, Goyal Paras, Guttal Vishwesha, Dutta Partha Sharathi, Krishnan Narayanan C
Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
Department of Computer Science, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
R Soc Open Sci. 2024 Jun 5;11(6):231767. doi: 10.1098/rsos.231767. eCollection 2024 Jun.
Complex spatio-temporal systems like lakes, forests and climate systems exhibit alternative stable states. In such systems, as the threshold value of the driver is crossed, the system may experience a sudden (discontinuous) transition or smooth (continuous) transition to an undesired steady state. Theories predict that changes in the structure of the underlying spatial patterns precede such transitions. While there has been a large body of research on identifying early warning signals of critical transitions, the problem of forecasting the type of transitions (sudden versus smooth) remains an open challenge. We address this gap by developing an advanced machine learning (ML) toolkit that serves as an early warning indicator of spatio-temporal critical transitions, Spatial Early Warning Signal Network (S-EWSNet). ML models typically resemble a black box and do not allow envisioning what the model learns in discerning the labels. Here, instead of naively relying upon the deep learning model, we let the deep neural network learn the latent features characteristic of transitions via an optimal sampling strategy (OSS) of spatial patterns. The S-EWSNet is trained on data from a stochastic cellular automata model deploying the OSS, providing an early warning indicator of transitions while detecting its type in simulated and empirical samples.
像湖泊、森林和气候系统这样的复杂时空系统呈现出交替稳定状态。在这类系统中,当驱动因素的阈值被突破时,系统可能会经历突然(不连续)转变或平稳(连续)转变至不期望的稳态。理论预测,在这种转变之前,潜在空间模式的结构会发生变化。虽然已经有大量关于识别临界转变早期预警信号的研究,但预测转变类型(突然转变与平稳转变)的问题仍然是一个悬而未决的挑战。我们通过开发一种先进的机器学习(ML)工具包——空间早期预警信号网络(S-EWSNet)来填补这一空白,它可作为时空临界转变的早期预警指标。ML模型通常类似一个黑箱,不允许人们设想模型在辨别标签时学到了什么。在这里,我们不是单纯依赖深度学习模型,而是让深度神经网络通过空间模式的最优采样策略(OSS)来学习转变的潜在特征。S-EWSNet基于部署了OSS的随机细胞自动机模型的数据进行训练,在检测模拟样本和实证样本中的转变类型时,提供转变的早期预警指标。