Suppr超能文献

深度学习在 tipping points 预警信号中的应用。

Deep learning for early warning signals of tipping points.

机构信息

Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.

出版信息

Proc Natl Acad Sci U S A. 2021 Sep 28;118(39). doi: 10.1073/pnas.2106140118.

Abstract

Many natural systems exhibit tipping points where slowly changing environmental conditions spark a sudden shift to a new and sometimes very different state. As the tipping point is approached, the dynamics of complex and varied systems simplify down to a limited number of possible "normal forms" that determine qualitative aspects of the new state that lies beyond the tipping point, such as whether it will oscillate or be stable. In several of those forms, indicators like increasing lag-1 autocorrelation and variance provide generic early warning signals (EWS) of the tipping point by detecting how dynamics slow down near the transition. But they do not predict the nature of the new state. Here we develop a deep learning algorithm that provides EWS in systems it was not explicitly trained on, by exploiting information about normal forms and scaling behavior of dynamics near tipping points that are common to many dynamical systems. The algorithm provides EWS in 268 empirical and model time series from ecology, thermoacoustics, climatology, and epidemiology with much greater sensitivity and specificity than generic EWS. It can also predict the normal form that characterizes the oncoming tipping point, thus providing qualitative information on certain aspects of the new state. Such approaches can help humans better prepare for, or avoid, undesirable state transitions. The algorithm also illustrates how a universe of possible models can be mined to recognize naturally occurring tipping points.

摘要

许多自然系统都存在临界点,在这些临界点,环境条件的缓慢变化会引发突然的转变,进入一个新的、有时非常不同的状态。随着临界点的临近,复杂多样系统的动态会简化为有限数量的可能“正常形式”,这些形式决定了超出临界点的新状态的定性方面,例如它是振荡还是稳定。在其中一些形式中,像滞后 1 自相关和方差增加等指标通过检测过渡附近的动力学如何减缓,提供了临界点的通用早期预警信号(EWS)。但它们并不能预测新状态的性质。在这里,我们开发了一种深度学习算法,通过利用许多动力系统共有的临界点附近的正常形式和动力学标度行为的信息,在它没有明确训练过的系统中提供 EWS。该算法在来自生态学、热声学、气候学和流行病学的 268 个经验和模型时间序列中提供了 EWS,其敏感性和特异性都远远高于通用 EWS。它还可以预测即将到来的临界点的正常形式,从而提供有关新状态某些方面的定性信息。此类方法可以帮助人类更好地为不期望的状态转变做好准备或避免这种转变。该算法还说明了如何挖掘可能的模型宇宙来识别自然发生的临界点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9274/8488604/6332a551a50e/pnas.2106140118fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验