Suppr超能文献

自交不亲和等位基因之间的显性作用决定了异源多倍体的交配系统。

Dominance between self-incompatibility alleles determines the mating system of allopolyploids.

作者信息

Duan Tianlin, Zhang Zebin, Genete Mathieu, Poux Céline, Sicard Adrien, Lascoux Martin, Castric Vincent, Vekemans Xavier

机构信息

Department of Ecology and Genetics, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.

Department of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.

出版信息

Evol Lett. 2024 Mar 17;8(4):550-560. doi: 10.1093/evlett/qrae011. eCollection 2024 Aug.

Abstract

The shift from outcrossing to self-fertilization is one of the main evolutionary transitions in plants and has broad effects on evolutionary trajectories. In Brassicaceae, the ability to inhibit self-fertilization is controlled by 2 genes, and , tightly linked within the -locus. A series of small non-coding RNAs also encoded within the -locus regulates the transcriptional activity of alleles, resulting in a linear dominance hierarchy between them. In Brassicaceae, natural allopolyploid species are often self-compatible (SC) even when one of the progenitor species is self-incompatible, but the reason why polyploid lineages tend to lose self-incompatibility (SI) and the timing of the loss of SI (immediately after ancestral hybridization between the progenitor species, or at a later stage after the formation of allopolyploid lineages) have generally remained elusive. We used a series of synthetic diploid and tetraploid hybrids obtained between self-fertilizing and outcrossing to test whether the breakdown of SI could be observed immediately after hybridization, and whether the occurrence of SC phenotypes could be explained by the dominance interactions between -haplotypes inherited from the parental lineages. We used RNA-sequencing data from young inflorescences to measure allele-specific expression of the gene and infer dominance interactions in the synthetic hybrids. We then evaluated the seed set from autonomous self-pollination in the synthetic hybrids. Our results demonstrate that self-compatibility of the hybrids depends on the relative dominance between -alleles inherited from the parental species, confirming that SI can be lost instantaneously upon formation of the ancestral allopolyploid lineage. They also confirm that the epigenetic regulation that controls dominance interactions between -alleles can function between subgenomes in allopolyploids. Together, our results illustrate how a detailed knowledge of the mechanisms controlling SI can illuminate our understanding of the patterns of co-variation between the mating system and changes in ploidy.

摘要

从异花授粉到自花受精的转变是植物主要的进化转变之一,对进化轨迹具有广泛影响。在十字花科中,抑制自花受精的能力由两个基因( 和 )控制,这两个基因在 位点紧密连锁。一系列同样在 位点编码的小非编码RNA调节 等位基因的转录活性,导致它们之间呈现线性显性等级关系。在十字花科中,天然异源多倍体物种通常是自交亲和的(SC),即使其中一个亲本物种是自交不亲和的,但多倍体系往往失去自交不亲和性(SI)的原因以及SI丧失的时间(在亲本物种之间的祖先杂交后立即发生,还是在异源多倍体系形成后的后期阶段)通常仍不明确。我们利用自花受精的 和异花授粉的 之间获得的一系列合成二倍体和四倍体杂种,来测试杂交后是否能立即观察到SI的破坏,以及SC表型的出现是否可以用从亲本谱系遗传的 -单倍型之间的显性相互作用来解释。我们使用来自幼嫩花序的RNA测序数据来测量 基因的等位基因特异性表达,并推断合成杂种中的显性相互作用。然后,我们评估了合成杂种中自主自花授粉的结实率。我们的结果表明,杂种的自交亲和性取决于从亲本物种遗传的 -等位基因之间的相对显性,证实了SI可以在祖先异源多倍体系形成时立即丧失。它们还证实,控制 -等位基因之间显性相互作用的表观遗传调控可以在异源多倍体的亚基因组之间起作用。总之,我们的结果说明了对控制SI机制的详细了解如何能够阐明我们对交配系统和倍性变化之间共变模式的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cecd/11291619/3eedfbd92e17/qrae011_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验