Trueman Ryan P, Guillemot-Legris Owein, Lancashire Henry T, Mehta Abijeet S, Tropp Joshua, Daso Rachel E, Rivnay Jonathan, Tabor Alethea B, Phillips James B, Schroeder Bob C
UCL Centre for Nerve Engineering, University College London, London WC1N 1AX, UK; Department of Pharmacology, UCL School of Pharmacy, University College London, London WC1N 1AX, UK.
UCL Centre for Nerve Engineering, University College London, London WC1N 1AX, UK, Department of Pharmacology, UCL School of Pharmacy, University College London, London WC1N 1AX, UK.
Adv Eng Mater. 2024 Mar;26(6). doi: 10.1002/adem.202301488. Epub 2024 Jan 24.
Electrical stimulation has shown promise in clinical studies to treat nerve injuries. This work is aimed to create an aligned bioelectronic construct that can be used to bridge a nerve gap, directly interfacing with the damaged nerve tissue to provide growth support. The conductive three-dimensional bioelectronic scaffolds described herein are composite materials, comprised of conductive polypyrrole (PPy) nanoparticles embedded in an aligned collagen hydrogel. The bioelectronic constructs are seeded with dorsal root ganglion derived primary rat neurons and electrically stimulated in vitro. The PPy loaded constructs support a 1.7-fold increase in neurite length in comparison to control collagen constructs. Furthermore, upon electrical stimulation of the PPy-collagen construct, a 1.8-fold increase in neurite length is shown. This work illustrates the potential of bioelectronic constructs in neural tissue engineering and lays the groundwork for the development of novel bioelectronic materials for neural interfacing applications.
电刺激在治疗神经损伤的临床研究中已显示出前景。这项工作旨在创建一种排列整齐的生物电子构建体,可用于桥接神经间隙,直接与受损神经组织连接以提供生长支持。本文所述的导电三维生物电子支架是复合材料,由嵌入排列整齐的胶原水凝胶中的导电聚吡咯(PPy)纳米颗粒组成。生物电子构建体接种了背根神经节衍生的原代大鼠神经元,并在体外进行电刺激。与对照胶原构建体相比,负载PPy的构建体使神经突长度增加了1.7倍。此外,对PPy-胶原构建体进行电刺激后,神经突长度增加了1.8倍。这项工作说明了生物电子构建体在神经组织工程中的潜力,并为开发用于神经接口应用的新型生物电子材料奠定了基础。