Shebindu Adam, Kaveti Durga, Umutoni Linda, Kirk Gia, Burton Michael D, Jones Caroline N
Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080 USA.
Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX 75390 USA.
Microsyst Nanoeng. 2024 Aug 1;10:106. doi: 10.1038/s41378-024-00733-1. eCollection 2024.
Neuroinflammation is characterized by the elevation of cytokines and adenosine triphosphate (ATP), which in turn activates microglia. These immunoregulatory molecules typically form gradients in vivo, which significantly influence microglial behaviors such as increasing calcium signaling, migration, phagocytosis, and cytokine secretion. Quantifying microglial calcium signaling in the context of inflammation holds the potential for developing precise therapeutic strategies for neurological diseases. However, the current calcium imaging systems are technically challenging to operate, necessitate large volumes of expensive reagents and cells, and model immunoregulatory molecules as uniform concentrations, failing to accurately replicate the in vivo microenvironment. In this study, we introduce a novel calcium monitoring micro-total analysis system (CAM-μTAS) designed to quantify calcium dynamics in microglia (BV2 cells) within defined cytokine gradients. Leveraging programmable pneumatically actuated lifting gate microvalve arrays and a Quake valve, CAM-μTAS delivers cytokine gradients to microglia, mimicking neuroinflammation. Our device automates sample handling and cell culture, enabling rapid media changes in just 1.5 s, thus streamlining the experimental workflow. By analyzing BV2 calcium transient latency to peak, we demonstrate location-dependent microglial activation patterns based on cytokine and ATP gradients, offering insights contrasting those of non-gradient-based perfusion systems. By harnessing advancements in microsystem technology to quantify calcium dynamics, we can construct simplified human models of neurological disorders, unravel the intricate mechanisms of cell-cell signaling, and conduct robust evaluations of novel therapeutics.
神经炎症的特征是细胞因子和三磷酸腺苷(ATP)水平升高,进而激活小胶质细胞。这些免疫调节分子通常在体内形成梯度,这会显著影响小胶质细胞的行为,如增加钙信号传导、迁移、吞噬作用和细胞因子分泌。在炎症背景下量化小胶质细胞的钙信号传导,为开发针对神经疾病的精确治疗策略提供了可能性。然而,当前的钙成像系统在技术操作上具有挑战性,需要大量昂贵的试剂和细胞,并且将免疫调节分子模拟为均匀浓度,无法准确复制体内微环境。在本研究中,我们引入了一种新型的钙监测微全分析系统(CAM-μTAS),旨在量化在确定的细胞因子梯度内小胶质细胞(BV2细胞)中的钙动力学。利用可编程的气动提升门微阀阵列和震颤阀,CAM-μTAS将细胞因子梯度传递给小胶质细胞,模拟神经炎症。我们的设备实现了样品处理和细胞培养的自动化,能够在仅1.5秒内快速更换培养基,从而简化了实验工作流程。通过分析BV2钙瞬变从起始到峰值的延迟,我们基于细胞因子和ATP梯度展示了位置依赖性的小胶质细胞激活模式,提供了与非梯度灌注系统不同的见解。通过利用微系统技术的进步来量化钙动力学,我们可以构建简化的神经疾病人类模型,揭示细胞间信号传导的复杂机制,并对新型疗法进行有力评估。