Brzęczek-Szafran Alina, Gwóźdź Magdalena, Brun Nicolas, Wysokowski Marcin, Matuszek Karolina
Faculty of Chemistry, Department of Organic Chemical Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland.
ICGM, University of Montpellier, CNRS, ENSCM, 34293, Montpellier, France.
ChemSusChem. 2025 Jun 2;18(11):e2500288. doi: 10.1002/cssc.202500288. Epub 2025 Apr 22.
While the world remains dependent on fossil fuels in nearly every aspect of life, unused biomass is piling up as waste, despite its significant potential for valuable applications-a critical missed opportunity for sustainable innovation. Phase change materials (PCMs) have emerged as a pivotal technology in the urgent transition toward carbon neutrality, especially considering that heating and cooling consume nearly half of global energy expenditure. This comprehensive review advances the scientific understanding of sustainability and circularity in PCM fabrication by providing a strategic framework for developing composites from renewable resources. This framework involves the introduction of a novel classification system (types 0-3) for biomass-derived PCMs based on their levels of modification, enabling a comparison of material sources, performance metrics, and environmental impacts. By showing recent innovative developments in PCM shape stabilization, thermal conductivity enhancement, and leakage protection, it critically highlights the opportunities to replace conventional materials with innovative biomass-derived alternatives, such as biomass-derived carbons and polymers. Furthermore, the study integrates tools aligned with the Principles of Green Chemistry to aid the fabrication of truly sustainable materials, helping to guide researchers through material selection, process optimization, and the comprehensive evaluation of the environmental impact associated with their use and disposal.
尽管在生活的几乎每个方面,世界仍依赖化石燃料,但未利用的生物质却作为废物堆积如山,尽管其具有宝贵应用的巨大潜力——这是可持续创新中一个关键的错失机遇。相变材料(PCMs)已成为向碳中和紧急转型中的一项关键技术,特别是考虑到供暖和制冷消耗了全球近一半的能源支出。这篇综述通过提供一个从可再生资源开发复合材料的战略框架,推进了对相变材料制造中可持续性和循环性的科学理解。该框架涉及基于生物质衍生相变材料的改性程度引入一种新颖的分类系统(0 - 3型),从而能够比较材料来源、性能指标和环境影响。通过展示相变材料形状稳定化、热导率增强和防泄漏方面的最新创新进展,它着重强调了用创新的生物质衍生替代品(如生物质衍生的碳和聚合物)取代传统材料的机会。此外,该研究整合了符合绿色化学原则的工具,以协助制造真正可持续的材料,帮助指导研究人员进行材料选择、工艺优化以及对与其使用和处置相关的环境影响进行全面评估。