Suppr超能文献

基于结构信息的机器学习辅助底物结合口袋工程。

Machine learning-assisted substrate binding pocket engineering based on structural information.

机构信息

School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.

Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.

出版信息

Brief Bioinform. 2024 Jul 25;25(5). doi: 10.1093/bib/bbae381.

Abstract

Engineering enzyme-substrate binding pockets is the most efficient approach for modifying catalytic activity, but is limited if the substrate binding sites are indistinct. Here, we developed a 3D convolutional neural network for predicting protein-ligand binding sites. The network was integrated by DenseNet, UNet, and self-attention for extracting features and recovering sample size. We attempted to enlarge the dataset by data augmentation, and the model achieved success rates of 48.4%, 35.5%, and 43.6% at a precision of ≥50% and 52%, 47.6%, and 58.1%. The distance of predicted and real center is ≤4 Å, which is based on SC6K, COACH420, and BU48 validation datasets. The substrate binding sites of Klebsiella variicola acid phosphatase (KvAP) and Bacillus anthracis proline 4-hydroxylase (BaP4H) were predicted using DUnet, showing high competitive performance of 53.8% and 56% of the predicted binding sites that critically affected the catalysis of KvAP and BaP4H. Virtual saturation mutagenesis was applied based on the predicted binding sites of KvAP, and the top-ranked 10 single mutations contributed to stronger enzyme-substrate binding varied while the predicted sites were different. The advantage of DUnet for predicting key residues responsible for enzyme activity further promoted the success rate of virtual mutagenesis. This study highlighted the significance of correctly predicting key binding sites for enzyme engineering.

摘要

工程酶-底物结合口袋是修饰催化活性最有效的方法,但如果底物结合位点不明确,则受到限制。在这里,我们开发了一种用于预测蛋白质-配体结合位点的 3D 卷积神经网络。该网络通过 DenseNet、UNet 和自注意力进行集成,用于提取特征和恢复样本大小。我们尝试通过数据扩充来扩大数据集,并且模型在精度≥50%和 52%、47.6%和 58.1%时的成功率分别为 48.4%、35.5%和 43.6%。基于 SC6K、COACH420 和 BU48 验证数据集,预测的和真实中心之间的距离≤4Å。利用 DUnet 预测了 Klebsiella variicola 酸性磷酸酶(KvAP)和 Bacillus anthracis proline 4-羟化酶(BaP4H)的底物结合位点,预测的结合位点对 KvAP 和 BaP4H 的催化具有重要影响,具有 53.8%和 56%的高竞争性能。基于 KvAP 的预测结合位点进行了虚拟饱和诱变,排名前 10 的单个突变对更强的酶-底物结合的贡献各不相同,而预测的结合位点也不同。DUnet 用于预测对酶活性起关键作用的关键残基的优势进一步提高了虚拟诱变的成功率。这项研究强调了正确预测酶工程关键结合位点的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfcd/11299021/3f0a3b4d12a6/bbae381ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验