Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New Area, Shanghai 201210, China.
School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New Area, Shanghai 201210, China.
Brief Bioinform. 2024 Jul 25;25(5). doi: 10.1093/bib/bbae358.
PROteolysis TArgeting Chimeras (PROTACs) has recently emerged as a promising technology. However, the design of rational PROTACs, especially the linker component, remains challenging due to the absence of structure-activity relationships and experimental data. Leveraging the structural characteristics of PROTACs, fragment-based drug design (FBDD) provides a feasible approach for PROTAC research. Concurrently, artificial intelligence-generated content has attracted considerable attention, with diffusion models and Transformers emerging as indispensable tools in this field. In response, we present a new diffusion model, DiffPROTACs, harnessing the power of Transformers to learn and generate new PROTAC linkers based on given ligands. To introduce the essential inductive biases required for molecular generation, we propose the O(3) equivariant graph Transformer module, which augments Transformers with graph neural networks (GNNs), using Transformers to update nodes and GNNs to update the coordinates of PROTAC atoms. DiffPROTACs effectively competes with existing models and achieves comparable performance on two traditional FBDD datasets, ZINC and GEOM. To differentiate the molecular characteristics between PROTACs and traditional small molecules, we fine-tuned the model on our self-built PROTACs dataset, achieving a 93.86% validity rate for generated PROTACs. Additionally, we provide a generated PROTAC database for further research, which can be accessed at https://bailab.siais.shanghaitech.edu.cn/service/DiffPROTACs-generated.tgz. The corresponding code is available at https://github.com/Fenglei104/DiffPROTACs and the server is at https://bailab.siais.shanghaitech.edu.cn/services/diffprotacs.
PROteolysis TArgeting Chimeras (PROTACs) 最近成为一种很有前途的技术。然而,由于缺乏结构-活性关系和实验数据,合理的 PROTACs 的设计,特别是连接子组件的设计仍然具有挑战性。片段基药物设计 (FBDD) 利用 PROTACs 的结构特征,为 PROTAC 研究提供了一种可行的方法。同时,人工智能生成的内容引起了相当大的关注,扩散模型和 Transformers 成为该领域不可或缺的工具。有鉴于此,我们提出了一种新的扩散模型 DiffPROTACs,利用 Transformers 的力量,根据给定的配体学习和生成新的 PROTAC 连接子。为了引入分子生成所需的基本归纳偏差,我们提出了 O(3) 等变图 Transformer 模块,该模块使用图神经网络 (GNN) 增强了 Transformers,使用 Transformers 更新节点,使用 GNN 更新 PROTAC 原子的坐标。DiffPROTACs 有效地与现有模型竞争,并在两个传统的 FBDD 数据集 ZINC 和 GEOM 上实现了可比的性能。为了区分 PROTACs 和传统小分子的分子特征,我们在我们自建的 PROTACs 数据集上对模型进行了微调,生成的 PROTACs 的有效性率达到了 93.86%。此外,我们提供了一个生成的 PROTAC 数据库供进一步研究,可在 https://bailab.siais.shanghaitech.edu.cn/service/DiffPROTACs-generated.tgz 访问。相应的代码可在 https://github.com/Fenglei104/DiffPROTACs 获得,服务器可在 https://bailab.siais.shanghaitech.edu.cn/services/diffprotacs 访问。