Schofield Christina, Sarrigiannidis Stylianos, Moran-Horowich Alejandro, Jackson Emma, Rodrigo-Navarro Aleixandre, van Agtmael Tom, Cantini Marco, Dalby Matthew J, Salmeron-Sanchez Manuel
Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, G11 6EW, UK.
School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, G12 8TA, UK.
Adv Healthc Mater. 2024 Dec;13(32):e2303777. doi: 10.1002/adhm.202303777. Epub 2024 Aug 5.
The blood-brain barrier (BBB) tightly regulates substance transport between the bloodstream and the brain. Models for the study of the physiological processes affecting the BBB, as well as predicting the permeability of therapeutic substances for neurological and neurovascular pathologies, are highly desirable. Existing models, such as Transwell utilizing-models, do not mimic the extracellular environment of the BBB with their stiff, semipermeable, non-biodegradable membranes. To help overcome this, we engineered electrospun membranes from poly L-lactic acid in combination with a nanometric coating of poly(ethyl acrylate) (PEA) that drives fibrillogenesis of fibronectin, facilitating the synergistic presentation of both growth factors and integrin binding sites. Compared to commercial semi-porous membranes, these membranes significantly improve the expression of BBB-related proteins in brain endothelial cells. PEA-coated membranes in combination with different growth factors and extracellular protein coatings reveal nerve growth factor (NGF) and fibroblast growth factor (FGF-2) caused formation of better barriers in vitro. This BBB model offers a robust platform for studying key biochemical factors influencing barrier formation that marries the simplicity of the Transwell model with the highly tunable electrospun PEA-fibronectin membranes. This enables the generation of high-throughput drug permeability models without the need of complicated co-culture conditions.
血脑屏障(BBB)严格调控着血液与大脑之间的物质运输。对于研究影响血脑屏障的生理过程以及预测治疗性物质对神经和神经血管疾病的通透性而言,相关模型非常必要。现有的模型,如利用Transwell的模型,其僵硬、半透性、不可生物降解的膜无法模拟血脑屏障的细胞外环境。为了帮助克服这一问题,我们用聚L-乳酸制备了电纺膜,并结合聚(丙烯酸乙酯)(PEA)的纳米涂层,该涂层可驱动纤连蛋白的纤维形成,促进生长因子和整合素结合位点的协同呈现。与商业半透膜相比,这些膜显著提高了脑内皮细胞中血脑屏障相关蛋白的表达。结合不同生长因子和细胞外蛋白涂层的PEA涂层膜显示,神经生长因子(NGF)和成纤维细胞生长因子(FGF-2)在体外可导致形成更好的屏障。这种血脑屏障模型为研究影响屏障形成的关键生化因素提供了一个强大的平台,它将Transwell模型的简单性与高度可调的电纺PEA-纤连蛋白膜相结合。这使得无需复杂的共培养条件就能建立高通量药物通透性模型。