Center for Soft Condensed Matter Physics and Interdisciplinary Research & Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China.
Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
Macromol Rapid Commun. 2024 Sep;45(18):e2400206. doi: 10.1002/marc.202400206. Epub 2024 Aug 5.
In recent years, the fully oxygen-tolerant reversible deactivation radical polymerization (RDRP) has become a highly researched area. In this contribution, a new and minimalist method is successfully employed to accomplish fully oxygen-tolerant reversible addition-fragmentation chain transfer (RAFT) polymerization using bis(trithiocarbonate) disulfides (BisTTC) as an iniferter agent, where the released sulfur-centered trithiocarbonate (TTC) radical can initiate monomer. Furthermore, polymerization kinetics revealed the typical "living" features of this polymerization system. More importantly, by high-throughput screening, it is found that dodecyl-substituted TTC is responsible for the fully oxygen-tolerant RAFT polymerization though trithiocarbonate radical initiation and R radical deoxygenation. It is believed that trithiocarbonate radical initiation strategy provides a powerful and minimalist tool for fully oxygen-tolerant RDRPs.
近年来,完全耐氧的可逆失活自由基聚合(RDRP)已成为一个备受关注的研究领域。在本研究中,我们成功采用了一种新颖的极简方法,使用双(三硫代碳酸酯)二硫化物(BisTTC)作为引发剂,实现了完全耐氧的可逆加成-断裂链转移(RAFT)聚合,其中释放的含硫中心的三硫代碳酸酯(TTC)自由基可以引发单体。此外,聚合动力学研究揭示了该聚合体系的典型“活性聚合”特征。更为重要的是,通过高通量筛选,我们发现十二烷基取代的 TTC 通过三硫代碳酸酯自由基引发和 R 自由基脱氧反应来实现完全耐氧的 RAFT 聚合。我们相信三硫代碳酸酯自由基引发策略为完全耐氧的 RDRP 提供了一种强大而极简的工具。