Suppr超能文献

基于 DSP2 方法,从 3D 骨盆骨骼模型中自动提取变量,以进行性别估计。

Automatic variable extraction from 3D coxal bone models for sex estimation using the DSP2 method.

机构信息

Department of Anatomy, Faculty of Medicine in Hradec Králové, Charles University, Šimkova, 870, Hradec Králové, 500 03, Czech Republic.

Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 44, Czech Republic.

出版信息

Int J Legal Med. 2024 Nov;138(6):2647-2658. doi: 10.1007/s00414-024-03301-4. Epub 2024 Aug 5.

Abstract

Thanks to technical progress and the availability of virtual data, sex estimation methods as part of a biological profile are undergoing an inevitable evolution. Further reductions in subjectivity, but potentially also in measurement errors, can be brought by approaches that automate the extraction of variables. Such automatization also significantly accelerates and facilitates the specialist's work. The aim of this study is (1) to apply a previously proposed algorithm (Kuchař et al. 2021) to automatically extract 10 variables used for the DSP2 sex estimation method, and (2) to test the robustness of the new automatic approach in a current heterogeneous population. For the first aim, we used a sample of 240 3D scans of pelvic bones from the same individuals, which were measured manually for the DSP database. For the second aim a sample of 108 pelvic bones from the New Mexico Decedent Image Database was used. The results showed high agreement between automatic and manual measurements with rTEM below 5% for all dimensions except two. The accuracy of final sex estimates based on all 10 variables was excellent (error rate 0.3%). However, we observed a higher number of undetermined individuals in the Portuguese sample (25% of males) and the New Mexican sample (36.5% of females). In conclusion, the procedure for automatic dimension extraction was successfully applied both to a different type of data and to a heterogeneous population.

摘要

由于技术的进步和虚拟数据的可用性,作为生物特征一部分的性别估计方法正在经历一场不可避免的演变。通过自动化变量提取的方法,可以进一步减少主观性,但也可能会导致测量误差。这种自动化还可以显著加快和简化专家的工作。本研究的目的是:(1) 应用先前提出的算法(Kuchař 等人,2021 年)自动提取用于 DSP2 性别估计方法的 10 个变量;(2) 在当前的异质人群中测试新的自动方法的稳健性。为了实现第一个目标,我们使用了 240 个来自同一人群的骨盆 3D 扫描样本,这些样本是为 DSP 数据库手动测量的。为了实现第二个目标,我们使用了来自新墨西哥死者图像数据库的 108 个骨盆样本。结果表明,自动测量和手动测量之间具有高度一致性,除了两个尺寸外,所有尺寸的 rTEM 都低于 5%。基于所有 10 个变量的最终性别估计的准确性非常高(错误率为 0.3%)。然而,我们观察到葡萄牙样本(25%的男性)和新墨西哥样本(36.5%的女性)中有更多的不确定个体。总之,自动尺寸提取程序成功地应用于不同类型的数据和异质人群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e418/11490455/7e7d3ac22e4d/414_2024_3301_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验