Suppr超能文献

基于随机场的骨密度建模:正态性、平稳性、性别和年龄依赖性。

Bone mineral density modeling via random field: Normality, stationarity, sex and age dependence.

机构信息

Institute of New Technologies and Applied Informatics, Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentskí 1402/2, Liberec 461 17, Czech Republic.

Institute of Structural Mechanics, Faculty of Civil Engineering, Brno University of Technology, Veveří 331/95, Brno 602 00, Czech Republic.

出版信息

Comput Methods Programs Biomed. 2021 Oct;210:106353. doi: 10.1016/j.cmpb.2021.106353. Epub 2021 Aug 19.

Abstract

BACKGROUND AND OBJECTIVE

Capturing the population variability of bone properties is of paramount importance to biomedical engineering. The aim of the present paper is to describe variability and correlations in bone mineral density with a spatial random field inferred from routine computed tomography data.

METHODS

Random fields were simulated by transforming pairwise uncorrelated Gaussian random variables into correlated variables through the spectral decomposition of an age-detrended correlation matrix. The validity of the random field model was demonstrated in the spatiotemporal analysis of bone mineral density. The similarity between the computed tomography samples and those generated via random fields was analyzed with the energy distance metric.

RESULTS

The random field of bone mineral density was found to be approximately Gaussian/slightly left-skewed/strongly right-skewed at various locations. However, average bone density could be simulated well with the proposed Gaussian random field for which the energy distance, i.e., a measure that quantifies discrepancies between two distribution functions, is convergent with respect to the number of correlation eigenpairs.

CONCLUSIONS

The proposed random field model allows the enhancement of computational biomechanical models with variability in bone mineral density, which could increase the usability of the model and provides a step forward in in-silico medicine.

摘要

背景和目的

捕捉骨骼属性的人群变异性对生物医学工程至关重要。本文旨在描述从常规计算机断层扫描数据推断的空间随机场中骨密度的变异性和相关性。

方法

通过将成对不相关的高斯随机变量通过年龄去趋势相关矩阵的谱分解转化为相关变量,从而模拟随机场。通过骨骼密度的时空分析验证了随机场模型的有效性。使用能量距离度量分析了计算机断层扫描样本与通过随机场生成的样本之间的相似性。

结果

发现在不同位置,骨密度的随机场大约呈高斯/轻微左偏/强右偏分布。但是,对于所提出的高斯随机场,可以很好地模拟平均骨密度,对于该随机场,能量距离(一种量化两个分布函数差异的度量)与相关特征对的数量收敛。

结论

所提出的随机场模型允许在计算生物力学模型中增强骨密度的变异性,这可以提高模型的可用性,并在计算机医学领域向前迈进了一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验