Suppr超能文献

将后验概率告知阈值应用于传统的颅骨特征性别估计方法。

Applying posterior probability informed thresholds to traditional cranial trait sex estimation methods.

作者信息

Avent Patricia R, Hughes Cris E, Garvin Heather M

机构信息

Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, USA.

出版信息

J Forensic Sci. 2022 Mar;67(2):440-449. doi: 10.1111/1556-4029.14947. Epub 2021 Nov 19.

Abstract

Sex estimation methods using traditional cranial nonmetric traits utilize predictive models to produce a final sex estimation, using the resulting model's score to classify the individual. When sex estimations are assigned from discriminant scoring alone, statistical confidence in the resultant estimate is not always assessed or reported. Although some forensic anthropologists may qualitatively report their confidence in the assessment (e.g., "probable male"), these statements are subjective, not standardized, and not necessarily based on statistical results in a uniform way. The goals of this study were to evaluate how posterior probability-informed thresholds (PPITs) impacted accuracy rates, assess the balance between sample inclusion and accuracy for the proposed PPIT approach, and make recommendations for the use and interpretation of specific thresholds in casework. Using a sample of U.S. Black and White females and males (n = 292), we examined how PPITs can standardize the decision-making process of inferring sex for two methods using nonmetric cranial traits. We found that using PPITs of at least 0.85 increased accuracy (over 92% for some PPITs) yet remained highly inclusive of the sample. PPITs < 0.75 did not produce classification accuracy rates significantly higher than chance, and when using these cranial trait sex estimation methods, cases with posterior probabilities (PPs) <0.75 should be reported as "indeterminate." The 0.75-0.84 PPIT interval had an accuracy rate of 76%, which was both statistically significantly different from chance as well as from the higher (>0.85) groups, suggesting that although sex estimation at this level may be acceptable, the results hold lower confidence.

摘要

使用传统颅骨非测量性状的性别估计方法利用预测模型得出最终的性别估计结果,并使用所得模型的分数对个体进行分类。当仅通过判别评分来进行性别估计时,所得估计结果的统计置信度并不总是得到评估或报告。尽管一些法医人类学家可能会定性地报告他们对评估的置信度(例如,“可能为男性”),但这些表述是主观的,没有标准化,也不一定以统一的方式基于统计结果。本研究的目的是评估后验概率知情阈值(PPITs)如何影响准确率,评估所提出的PPIT方法在样本纳入和准确率之间的平衡,并就具体阈值在实际案件工作中的使用和解释提出建议。我们使用美国黑人和白人女性及男性的样本(n = 292),研究了PPITs如何能使使用非测量颅骨性状的两种方法在推断性别的决策过程标准化。我们发现,使用至少0.85的PPITs可提高准确率(某些PPITs的准确率超过92%),同时对样本的包容性仍然很高。PPITs < 0.75时产生的分类准确率并不显著高于随机概率,并且在使用这些颅骨性状性别估计方法时,后验概率(PPs)< 0.75的案件应报告为“无法确定”。0.75 - 0.84的PPIT区间准确率为76%,这在统计学上既与随机概率有显著差异,也与更高(> 0.85)的组有显著差异,这表明尽管在此水平的性别估计可能是可接受的,但结果的置信度较低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验