Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States of America.
Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America.
Biomed Phys Eng Express. 2024 Aug 14;10(5). doi: 10.1088/2057-1976/ad6b32.
Technological development of microwave treatment and detection techniques for lung cancer requires accurate and comprehensive knowledge of the microwave dielectric properties of human lung tissue. We characterize the dielectric properties of room temperature human lung tissue from 0.5 to 10 GHz for three lung tissue groups: normal, fibroelastotic, and malignant. We fit a two-pole Debye model to the measured frequency-dependent complex permittivity and calculate the median Debye parameters for the three groups. We find that malignant lung tissue is approximately 10% higher in relative permittivity and conductivity compared to normal lung tissue; this trend matches previously reported normal versus malignant data for other biological tissues. There is little contrast between benign lung tissue with fibroelastosis and malignant lung tissue. We extrapolate our data from room temperature to 37 °C using a temperature-dependence model for animal lung tissue and use the Maxwell-Garnett dielectric mixing model to predict the dielectric properties of inflation-dynamic human lung tissue; both approximations correspond with previously reported dielectric data of bovine and porcine lung tissue.
肺癌的微波处理和检测技术的发展需要对人体肺组织的微波介电特性有准确和全面的了解。我们对三种肺组织类型(正常、纤维弹性和恶性)的人体肺组织在室温下从 0.5 到 10GHz 的介电特性进行了表征。我们将双极 Debye 模型拟合到测量的频率相关复介电常数中,并计算了三组的中位数 Debye 参数。我们发现恶性肺组织的相对介电常数和电导率比正常肺组织高约 10%;这一趋势与其他生物组织中先前报道的正常与恶性数据相吻合。纤维弹性良性肺组织与恶性肺组织之间几乎没有差异。我们使用动物肺组织的温度相关模型将我们在室温下的数据外推到 37°C,并使用 Maxwell-Garnett 介电混合模型预测充气动态人体肺组织的介电特性;这两种近似都与先前报道的牛和猪肺组织的介电数据相吻合。
Biomed Phys Eng Express. 2024-8-14
Biomed Phys Eng Express. 2021-10-27
Med Sci Monit. 2018-3-2