Suppr超能文献

机器学习和深度学习工具在癌症监测数据自动采集方面的应用。

Machine learning and deep learning tools for the automated capture of cancer surveillance data.

机构信息

Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA.

Advanced Computing for Health Sciences, Computing and Computational Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

出版信息

J Natl Cancer Inst Monogr. 2024 Aug 1;2024(65):145-151. doi: 10.1093/jncimonographs/lgae018.

Abstract

The National Cancer Institute and the Department of Energy strategic partnership applies advanced computing and predictive machine learning and deep learning models to automate the capture of information from unstructured clinical text for inclusion in cancer registries. Applications include extraction of key data elements from pathology reports, determination of whether a pathology or radiology report is related to cancer, extraction of relevant biomarker information, and identification of recurrence. With the growing complexity of cancer diagnosis and treatment, capturing essential information with purely manual methods is increasingly difficult. These new methods for applying advanced computational capabilities to automate data extraction represent an opportunity to close critical information gaps and create a nimble, flexible platform on which new information sources, such as genomics, can be added. This will ultimately provide a deeper understanding of the drivers of cancer and outcomes in the population and increase the timeliness of reporting. These advances will enable better understanding of how real-world patients are treated and the outcomes associated with those treatments in the context of our complex medical and social environment.

摘要

美国国立癌症研究所和能源部的战略伙伴关系将应用先进的计算和预测机器学习及深度学习模型,自动从非结构化临床文本中捕获信息,以便将其纳入癌症登记系统。应用包括从病理报告中提取关键数据元素、确定病理或放射学报告是否与癌症相关、提取相关生物标志物信息以及识别复发。随着癌症诊断和治疗的日益复杂,仅采用手动方法来捕获重要信息变得越来越困难。这些将先进计算能力应用于自动化数据提取的新方法为缩小关键信息差距并创建一个灵活的平台提供了机会,新的信息源(如基因组学)可以添加到该平台上。这最终将提供对人群中癌症驱动因素和结果的更深入了解,并提高报告的及时性。这些进展将使我们能够更好地了解现实世界中患者的治疗方法以及在我们复杂的医疗和社会环境中与这些治疗相关的结果。

相似文献

1
Machine learning and deep learning tools for the automated capture of cancer surveillance data.
J Natl Cancer Inst Monogr. 2024 Aug 1;2024(65):145-151. doi: 10.1093/jncimonographs/lgae018.
3
Information extraction from multi-institutional radiology reports.
Artif Intell Med. 2016 Jan;66:29-39. doi: 10.1016/j.artmed.2015.09.007. Epub 2015 Oct 3.
5
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
6
Toward real-time reporting of cancer incidence: methodology, pilot study, and SEER Program implementation.
J Natl Cancer Inst Monogr. 2024 Aug 1;2024(65):123-131. doi: 10.1093/jncimonographs/lgae024.
8
The NCI All Ireland Cancer Conference.
Oncologist. 1999;4(4):275-277.
9
Using informatics to improve cancer surveillance.
J Am Med Inform Assoc. 2020 Jul 1;27(9):1488-1495. doi: 10.1093/jamia/ocaa149.
10
Rise of the Machines: Advances in Deep Learning for Cancer Diagnosis.
Trends Cancer. 2019 Mar;5(3):157-169. doi: 10.1016/j.trecan.2019.02.002. Epub 2019 Feb 28.

引用本文的文献

1
A survey of NLP methods for oncology in the past decade with a focus on cancer registry applications.
Artif Intell Rev. 2025;58(10):314. doi: 10.1007/s10462-025-11316-5. Epub 2025 Jul 16.
2
Evaluating algorithmic bias on biomarker classification of breast cancer pathology reports.
JAMIA Open. 2025 May 9;8(3):ooaf033. doi: 10.1093/jamiaopen/ooaf033. eCollection 2025 Jun.
3
The SEER Program's evolution: supporting clinically meaningful population-level research.
J Natl Cancer Inst Monogr. 2024 Aug 1;2024(65):110-117. doi: 10.1093/jncimonographs/lgae022.

本文引用的文献

1
Deep Transfer Learning Across Cancer Registries for Information Extraction from Pathology Reports.
IEEE EMBS Int Conf Biomed Health Inform. 2019 May;2019. doi: 10.1109/bhi.2019.8834586. Epub 2019 Sep 12.
3
Limitations of Transformers on Clinical Text Classification.
IEEE J Biomed Health Inform. 2021 Sep;25(9):3596-3607. doi: 10.1109/JBHI.2021.3062322. Epub 2021 Sep 3.
4
Using case-level context to classify cancer pathology reports.
PLoS One. 2020 May 12;15(5):e0232840. doi: 10.1371/journal.pone.0232840. eCollection 2020.
5
Deep Learning for Automated Extraction of Primary Sites From Cancer Pathology Reports.
IEEE J Biomed Health Inform. 2018 Jan;22(1):244-251. doi: 10.1109/JBHI.2017.2700722. Epub 2017 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验