Suppr超能文献

SEER 计划的演变:支持具有临床意义的人群水平研究。

The SEER Program's evolution: supporting clinically meaningful population-level research.

机构信息

Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA.

出版信息

J Natl Cancer Inst Monogr. 2024 Aug 1;2024(65):110-117. doi: 10.1093/jncimonographs/lgae022.

Abstract

Although the Surveillance, Epidemiology, and End Results (SEER) Program has maintained high standards of quality and completeness, the traditional data captured through population-based cancer surveillance are no longer sufficient to understand the impact of cancer and its outcomes. Therefore, in recent years, the SEER Program has expanded the population it covers and enhanced the types of data that are being collected. Traditionally, surveillance systems collected data characterizing the patient and their cancer at the time of diagnosis, as well as limited information on the initial course of therapy. SEER performs active follow-up on cancer patients from diagnosis until death, ascertaining critical information on mortality and survival over time. With the growth of precision oncology and rapid development and dissemination of new diagnostics and treatments, the limited data that registries have traditionally captured around the time of diagnosis-although useful for characterizing the cancer-are insufficient for understanding why similar patients may have different outcomes. The molecular composition of the tumor and genetic factors such as BRCA status affect the patient's treatment response and outcomes. Capturing and stratifying by these critical risk factors are essential if we are to understand differences in outcomes among patients who may be demographically similar, have the same cancer, be diagnosed at the same stage, and receive the same treatment. In addition to the tumor characteristics, it is essential to understand all the therapies that a patient receives over time, not only for the initial treatment period but also if the cancer recurs or progresses. Capturing this subsequent therapy is critical not only for research but also to help patients understand their risk at the time of therapeutic decision making. This article serves as an introduction and foundation for a JNCI Monograph with specific articles focusing on innovative new methods and processes implemented or under development for the SEER Program. The following sections describe the need to evaluate the SEER Program and provide a summary or introduction of those key enhancements that have been or are in the process of being implemented for SEER.

摘要

虽然监测、流行病学和最终结果(SEER)计划一直保持着高质量和完整性的高标准,但通过基于人群的癌症监测所获取的传统数据已不足以了解癌症及其结果的影响。因此,近年来,SEER 计划扩大了其覆盖的人群,并增强了正在收集的数据类型。传统上,监测系统收集的是患者及其癌症在诊断时的特征数据,以及关于初始治疗过程的有限信息。SEER 对癌症患者从诊断到死亡进行主动随访,确定随时间推移的死亡率和生存率的关键信息。随着精准肿瘤学的发展和新的诊断和治疗方法的快速发展和传播,登记处传统上在诊断时收集的有限数据——尽管对描述癌症有用——不足以了解为什么类似的患者可能有不同的结果。肿瘤的分子组成和 BRCA 状态等遗传因素会影响患者的治疗反应和结果。如果我们要了解可能在人口统计学上相似、患有相同癌症、在相同阶段诊断和接受相同治疗的患者之间的结果差异,那么对这些关键风险因素进行捕获和分层至关重要。除了肿瘤特征外,了解患者随时间接受的所有治疗方法也很重要,不仅是初始治疗期间,还包括癌症复发或进展时。捕获这些后续治疗不仅对研究很重要,还可以帮助患者在治疗决策时了解自己的风险。本文作为 JNCI 专论的介绍和基础,其中包含专门针对 SEER 计划实施或正在开发的创新新方法和流程的具体文章。以下各节描述了评估 SEER 计划的必要性,并对已经实施或正在实施的 SEER 的那些关键增强功能进行了总结或介绍。

相似文献

2
Reporting tumor genomic test results to SEER registries via linkages.通过链接向 SEER 登记处报告肿瘤基因组检测结果。
J Natl Cancer Inst Monogr. 2024 Aug 1;2024(65):168-179. doi: 10.1093/jncimonographs/lgae013.
4
History of the Surveillance, Epidemiology, and End Results (SEER) Program.监测、流行病学和最终结果(SEER)计划的历史。
J Natl Cancer Inst Monogr. 2024 Aug 1;2024(65):105-109. doi: 10.1093/jncimonographs/lgae033.

本文引用的文献

1
Reporting tumor genomic test results to SEER registries via linkages.通过链接向 SEER 登记处报告肿瘤基因组检测结果。
J Natl Cancer Inst Monogr. 2024 Aug 1;2024(65):168-179. doi: 10.1093/jncimonographs/lgae013.
7
Germline Genetic Testing After Cancer Diagnosis.癌症诊断后的种系基因检测。
JAMA. 2023 Jul 3;330(1):43-51. doi: 10.1001/jama.2023.9526.
10
Automatic information extraction from childhood cancer pathology reports.从儿童癌症病理报告中自动提取信息。
JAMIA Open. 2022 Jun 16;5(2):ooac049. doi: 10.1093/jamiaopen/ooac049. eCollection 2022 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验