Zaki Farzana R, Monroy Guillermo L, Shi Jindou, Sudhir Kavya, Boppart Stephen A
Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
J Biophotonics. 2024 Oct;17(10):e202400075. doi: 10.1002/jbio.202400075. Epub 2024 Aug 5.
Otitis media (OM), a highly prevalent inflammatory middle-ear disease in children worldwide, is commonly caused by an infection, and can lead to antibiotic-resistant bacterial biofilms in recurrent/chronic OM cases. A biofilm related to OM typically contains one or multiple bacterial species. OCT has been used clinically to visualize the presence of bacterial biofilms in the middle ear. This study used OCT to compare microstructural image texture features from bacterial biofilms. The proposed method applied supervised machine-learning-based frameworks (SVM, random forest, and XGBoost) to classify multiple species bacterial biofilms from in vitro cultures and clinically-obtained in vivo images from human subjects. Our findings show that optimized SVM-RBF and XGBoost classifiers achieved more than 95% of AUC, detecting each biofilm class. These results demonstrate the potential for differentiating OM-causing bacterial biofilms through texture analysis of OCT images and a machine-learning framework, offering valuable insights for real-time in vivo characterization of ear infections.
中耳炎(OM)是一种在全球儿童中高度流行的中耳炎症性疾病,通常由感染引起,在复发性/慢性中耳炎病例中可导致产生对抗生素耐药的细菌生物膜。与中耳炎相关的生物膜通常包含一种或多种细菌。光学相干断层扫描(OCT)已在临床上用于可视化中耳中细菌生物膜的存在。本研究使用OCT比较细菌生物膜的微观结构图像纹理特征。所提出的方法应用基于监督机器学习的框架(支持向量机、随机森林和极端梯度提升)对体外培养的多种细菌生物膜以及从人类受试者临床获取的体内图像进行分类。我们的研究结果表明,优化后的支持向量机-径向基函数(SVM-RBF)和极端梯度提升(XGBoost)分类器的曲线下面积(AUC)超过95%,能够检测出每种生物膜类别。这些结果证明了通过OCT图像纹理分析和机器学习框架区分引起中耳炎的细菌生物膜的潜力,为耳部感染的实时体内特征分析提供了有价值的见解。