Suppr超能文献

用于先进锌碘电池的具有定制阳极和阴极界面化学的不对称水凝胶电解质。

Asymmetric Hydrogel Electrolyte Featuring a Customized Anode and Cathode Interfacial Chemistry for Advanced Zn-I Batteries.

作者信息

Liu Qun, Yu Zhenlu, Fan Ke, Huang Haitao, Zhang Biao

机构信息

Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China.

出版信息

ACS Nano. 2024 Aug 20;18(33):22484-22494. doi: 10.1021/acsnano.4c07880. Epub 2024 Aug 5.

Abstract

An integrated asymmetric hydrogel electrolyte with a tailored composition and chemical structure on the cathode/anode-electrolyte interface is designed to boost the cost-effective, high-energy Zn-I battery. Such a configuration concurrently addresses the parasitic reactions on the Zn anode side and the polyiodide shuttle issue afflicting the cathode. Specifically, the Zn-cross-linked sodium alginate and carrageenan dual network (Carra-Zn-Alg) is adopted to guide the Zn transport, achieving a dendrite-free morphology on the Zn surface and ensuring long-term stability. For the cathode side, the poly(vinyl alcohol)-strengthened poly(3,4-ethylenedioxythiophene)polystyrenesulfonate hydrogel (PVA-PEDOT) with high conductivity is employed to trap polyiodide and accelerate electron transfer for mitigating the shuttle effect and facilitating I/I redox kinetics. Attributing to the asymmetrical architecture with a customized interfacial chemistry, the optimized Zn-I cell exhibits a superior Coulombic efficiency of 99.84% with a negligible capacity degradation at 0.1 A g and an enhanced stability of 10 000 cycles at 5 A g. The proposed asymmetric hydrogel provides a promising route to simultaneously resolve the distinct challenges encountered by the cathode and anode interfaces in rechargeable batteries.

摘要

设计了一种在阴极/阳极-电解质界面具有定制组成和化学结构的集成不对称水凝胶电解质,以提升具有成本效益的高能锌碘电池性能。这种配置同时解决了锌阳极侧的寄生反应以及困扰阴极的多碘化物穿梭问题。具体而言,采用锌交联的海藻酸钠和卡拉胶双网络(Carra-Zn-Alg)来引导锌的传输,在锌表面实现无枝晶形态并确保长期稳定性。对于阴极侧,采用具有高导电性的聚乙烯醇增强聚(3,4-乙撑二氧噻吩)聚苯乙烯磺酸盐水凝胶(PVA-PEDOT)来捕获多碘化物并加速电子转移,以减轻穿梭效应并促进I/I氧化还原动力学。由于具有定制界面化学的不对称结构,优化后的锌碘电池在0.1 A g时表现出99.84%的优异库仑效率,容量降解可忽略不计,在5 A g时具有增强的10000次循环稳定性。所提出的不对称水凝胶为同时解决可充电电池阴极和阳极界面遇到的不同挑战提供了一条有前景的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验