文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

重新缩放蛋白质-蛋白质相互作用可改善 Martini 3 模型在溶液中对柔性蛋白质的模拟效果。

Rescaling protein-protein interactions improves Martini 3 for flexible proteins in solution.

机构信息

Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200, Copenhagen N, Denmark.

Department of Biology, University of Fribourg, Fribourg, Switzerland.

出版信息

Nat Commun. 2024 Aug 5;15(1):6645. doi: 10.1038/s41467-024-50647-9.


DOI:10.1038/s41467-024-50647-9
PMID:39103332
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11300910/
Abstract

Multidomain proteins with flexible linkers and disordered regions play important roles in many cellular processes, but characterizing their conformational ensembles is difficult. We have previously shown that the coarse-grained model, Martini 3, produces too compact ensembles in solution, that may in part be remedied by strengthening protein-water interactions. Here, we show that decreasing the strength of protein-protein interactions leads to improved agreement with experimental data on a wide set of systems. We show that the 'symmetry' between rescaling protein-water and protein-protein interactions breaks down when studying interactions with or within membranes; rescaling protein-protein interactions better preserves the binding specificity of proteins with lipid membranes, whereas rescaling protein-water interactions preserves oligomerization of transmembrane helices. We conclude that decreasing the strength of protein-protein interactions improves the accuracy of Martini 3 for IDPs and multidomain proteins, both in solution and in the presence of a lipid membrane.

摘要

具有柔性连接和无序区域的多功能蛋白在许多细胞过程中起着重要作用,但它们的构象集合很难被描述。我们之前已经表明,粗粒化模型 Martini 3 在溶液中产生过于紧凑的集合,这可能部分通过加强蛋白质-水相互作用来纠正。在这里,我们表明,降低蛋白质-蛋白质相互作用的强度会导致与广泛的系统的实验数据更好地一致。我们表明,当研究与膜内外的相互作用时,调整蛋白质-水和蛋白质-蛋白质相互作用之间的“对称性”会被打破;调整蛋白质-蛋白质相互作用更好地保留了与脂膜结合的蛋白质的结合特异性,而调整蛋白质-水相互作用则保留了跨膜螺旋的寡聚化。我们的结论是,降低蛋白质-蛋白质相互作用的强度可以提高 Martini 3 在 IDP 和多功能蛋白中的准确性,无论是在溶液中还是在脂质膜存在的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be2/11300910/1cad365550a2/41467_2024_50647_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be2/11300910/5a46fe4b2c36/41467_2024_50647_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be2/11300910/39b2000560cb/41467_2024_50647_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be2/11300910/5133a4368bf7/41467_2024_50647_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be2/11300910/66becb10ef3c/41467_2024_50647_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be2/11300910/bed2b6778edf/41467_2024_50647_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be2/11300910/d00e808098cd/41467_2024_50647_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be2/11300910/b419e294a0eb/41467_2024_50647_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be2/11300910/1cad365550a2/41467_2024_50647_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be2/11300910/5a46fe4b2c36/41467_2024_50647_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be2/11300910/39b2000560cb/41467_2024_50647_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be2/11300910/5133a4368bf7/41467_2024_50647_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be2/11300910/66becb10ef3c/41467_2024_50647_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be2/11300910/bed2b6778edf/41467_2024_50647_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be2/11300910/d00e808098cd/41467_2024_50647_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be2/11300910/b419e294a0eb/41467_2024_50647_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be2/11300910/1cad365550a2/41467_2024_50647_Fig8_HTML.jpg

相似文献

[1]
Rescaling protein-protein interactions improves Martini 3 for flexible proteins in solution.

Nat Commun. 2024-8-5

[2]
Improving Martini 3 for Disordered and Multidomain Proteins.

J Chem Theory Comput. 2022-4-12

[3]
Curvature Footprints of Transmembrane Proteins in Simulations with the Martini Force Field.

J Phys Chem B. 2024-6-27

[4]
Scaling Protein-Water Interactions in the Martini 3 Coarse-Grained Force Field to Simulate Transmembrane Helix Dimers in Different Lipid Environments.

J Chem Theory Comput. 2023-4-11

[5]
Addressing the Excessive Aggregation of Membrane Proteins in the MARTINI Model.

J Chem Theory Comput. 2021-4-13

[6]
Analyzing lipid distributions and curvature in molecular dynamics simulations of complex membranes.

Methods Enzymol. 2024

[7]
On the application of the MARTINI coarse-grained model to immersion of a protein in a phospholipid bilayer.

J Chem Phys. 2015-12-28

[8]
The importance of membrane defects-lessons from simulations.

Acc Chem Res. 2014-6-3

[9]
Necessity of high-resolution for coarse-grained modeling of flexible proteins.

J Comput Chem. 2016-4-29

[10]
Translocation thermodynamics of linear and cyclic nonaarginine into model DPPC bilayer via coarse-grained molecular dynamics simulation: implications of pore formation and nonadditivity.

J Phys Chem B. 2014-2-26

引用本文的文献

[1]
Microtubules in Martini: Parameterizing a heterogeneous elastic-network towards a mechanically accurate microtubule.

PNAS Nexus. 2025-6-21

[2]
Toward understanding biomolecular materials comprising intrinsically disordered proteins simulation and experiment.

Mol Syst Des Eng. 2025-4-25

[3]
GōMartini 3: From large conformational changes in proteins to environmental bias corrections.

Nat Commun. 2025-4-30

[4]
Computational analysis of the structural-functional dynamics of a Co-receptor proteoglycan.

Front Mol Biosci. 2025-3-25

[5]
Coevolving residues distant from the ligand binding site are involved in GAF domain function.

Commun Chem. 2025-4-7

[6]
Martini3-IDP: improved Martini 3 force field for disordered proteins.

Nat Commun. 2025-3-24

[7]
Chemically Informed Coarse-Graining of Electrostatic Forces in Charge-Rich Biomolecular Condensates.

ACS Cent Sci. 2025-2-11

[8]
The Influence of Phosphoinositide Lipids in the Molecular Biology of Membrane Proteins: Recent Insights from Simulations.

J Mol Biol. 2025-2-15

[9]
Effects of All-Atom and Coarse-Grained Molecular Mechanics Force Fields on Amyloid Peptide Assembly: The Case of a Tau K18 Monomer.

J Chem Inf Model. 2024-12-9

[10]
Sequence and structural determinants of RNAPII CTD phase-separation and phosphorylation by CDK7.

Nat Commun. 2024-10-24

本文引用的文献

[1]
Structural biases in disordered proteins are prevalent in the cell.

Nat Struct Mol Biol. 2024-2

[2]
Improved Protein Model in SPICA Force Field.

J Chem Theory Comput. 2023-12-12

[3]
Crosstalk between regulatory elements in disordered TRPV4 N-terminus modulates lipid-dependent channel activity.

Nat Commun. 2023-7-13

[4]
Optimizing the Martini 3 Force Field Reveals the Effects of the Intricate Balance between Protein-Water Interaction Strength and Salt Concentration on Biomolecular Condensate Formation.

J Chem Theory Comput. 2024-2-27

[5]
Effective Molecular Dynamics from Neural Network-Based Structure Prediction Models.

J Chem Theory Comput. 2023-4-11

[6]
Scaling Protein-Water Interactions in the Martini 3 Coarse-Grained Force Field to Simulate Transmembrane Helix Dimers in Different Lipid Environments.

J Chem Theory Comput. 2023-4-11

[7]
Intrinsically disordered region of talin's FERM domain functions as an initial PIP recognition site.

Biophys J. 2023-4-4

[8]
Phase Separation of Heterogeneous Nuclear Ribonucleoprotein A1 upon Specific RNA-Binding Observed by Magnetic Resonance.

Angew Chem Int Ed Engl. 2022-10-4

[9]
ColabFold: making protein folding accessible to all.

Nat Methods. 2022-6

[10]
Improving Martini 3 for Disordered and Multidomain Proteins.

J Chem Theory Comput. 2022-4-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索