Suppr超能文献

基于神经网络结构预测模型的有效分子动力学。

Effective Molecular Dynamics from Neural Network-Based Structure Prediction Models.

机构信息

Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden.

出版信息

J Chem Theory Comput. 2023 Apr 11;19(7):1965-1975. doi: 10.1021/acs.jctc.2c01027. Epub 2023 Mar 24.

Abstract

Recent breakthroughs in neural network-based structure prediction methods, such as AlphaFold2 and RoseTTAFold, have dramatically improved the quality of computational protein structure prediction. These models also provide statistical confidence scores that can estimate uncertainties in the predicted structures, but it remains unclear to what extent these scores are related to the intrinsic conformational dynamics of proteins. Here, we compare AlphaFold2 prediction scores with explicit large-scale molecular dynamics simulations of 28 one- and two-domain proteins with varying degrees of flexibility. We demonstrate a strong correlation between the statistical prediction scores and the explicit motion derived from extensive atomistic molecular dynamics simulations and further derive an elastic network model based on the statistical scores of AlphFold2 (AF-ENM), which we benchmark in combination with coarse-grained molecular dynamics simulations. We show that our AF-ENM method reproduces the global protein dynamics with improved accuracy, providing a powerful way to derive effective molecular dynamics using neural network-based structure prediction models.

摘要

基于神经网络的结构预测方法的最新突破,如 AlphaFold2 和 RoseTTAFold,极大地提高了计算蛋白质结构预测的质量。这些模型还提供了统计置信分数,可以估计预测结构的不确定性,但目前尚不清楚这些分数与蛋白质内在构象动力学的关系程度。在这里,我们将 AlphaFold2 的预测分数与 28 种具有不同柔韧性的单域和双域蛋白质的大规模分子动力学模拟进行了比较。我们证明了统计预测分数与从广泛的原子分子动力学模拟中得出的显式运动之间存在很强的相关性,进一步基于 AlphaFold2 的统计分数推导出了一个弹性网络模型(AF-ENM),并结合粗粒分子动力学模拟对其进行了基准测试。我们表明,我们的 AF-ENM 方法可以以更高的精度再现全局蛋白质动力学,为使用基于神经网络的结构预测模型来推导出有效的分子动力学提供了一种强大的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dac3/11181330/67d43b9a1f9d/ct2c01027_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验