Fujitsu Research, 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, 2118588, Kanagawa, Japan.
Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, Japan.
Sci Rep. 2024 Aug 5;14(1):18105. doi: 10.1038/s41598-024-68959-7.
In complex systems, it's crucial to uncover latent mechanisms and their context-dependent relationships. This is especially true in medical research, where identifying unknown cancer mechanisms and their impact on phenomena like drug resistance is vital. Directly observing these mechanisms is challenging due to measurement complexities, leading to an approach that infers latent mechanisms from observed variable distributions. Despite machine learning advancements enabling sophisticated generative models, their black-box nature complicates the interpretation of complex latent mechanisms. A promising method for understanding these mechanisms involves estimating latent factors through linear projection, though there's no assurance that inferences made under specific conditions will remain valid across contexts. We propose a novel solution, suggesting data, even from systems appearing complex, can often be explained by sparse dependencies among a few common latent factors, regardless of the situation. This simplification allows for modeling that yields significant insights across diverse fields. We demonstrate this with datasets from finance, where we capture societal trends from stock price movements, and medicine, where we uncover new insights into cancer drug resistance through gene expression analysis.
在复杂系统中,揭示潜在机制及其与上下文相关的关系至关重要。在医学研究中尤其如此,因为识别未知的癌症机制及其对耐药性等现象的影响至关重要。由于测量的复杂性,直接观察这些机制具有挑战性,因此需要一种从观察到的变量分布中推断潜在机制的方法。尽管机器学习的进步使得复杂的生成模型成为可能,但它们的黑盒性质使得复杂的潜在机制的解释变得复杂。一种理解这些机制的有前途的方法是通过线性投影来估计潜在因素,尽管不能保证在特定条件下进行的推断在不同情况下仍然有效。我们提出了一种新的解决方案,表明即使对于看起来复杂的系统,数据也可以通过少数几个常见潜在因素之间的稀疏依赖关系来解释,而与情况无关。这种简化允许进行建模,从而在不同领域产生重要的见解。我们通过来自金融领域的数据集和医学领域的数据集证明了这一点,在金融领域,我们可以从股票价格波动中捕捉到社会趋势,在医学领域,我们可以通过基因表达分析揭示癌症耐药性的新见解。