Celik Safiye, Logsdon Benjamin A, Battle Stephanie, Drescher Charles W, Rendi Mara, Hawkins R David, Lee Su-In
Department of Computer Science & Engineering, University of Washington, Seattle, WA, USA.
Sage Bionetworks, Seattle, WA, USA.
Genome Med. 2016 Jun 10;8(1):66. doi: 10.1186/s13073-016-0319-7.
Patterns in expression data conserved across multiple independent disease studies are likely to represent important molecular events underlying the disease. We present the INSPIRE method to infer modules of co-expressed genes and the dependencies among the modules from multiple expression datasets that may contain different sets of genes. We show that INSPIRE infers more accurate models than existing methods to extract low-dimensional representation of expression data. We demonstrate that applying INSPIRE to nine ovarian cancer datasets leads to a new marker and potential driver of tumor-associated stroma, HOPX, followed by experimental validation. The implementation of INSPIRE is available at http://inspire.cs.washington.edu .
在多个独立疾病研究中保守的表达数据模式可能代表了该疾病潜在的重要分子事件。我们提出了INSPIRE方法,用于从可能包含不同基因集的多个表达数据集中推断共表达基因模块以及模块之间的依赖性。我们表明,INSPIRE比现有方法能推断出更准确的模型来提取表达数据的低维表示。我们证明,将INSPIRE应用于九个卵巢癌数据集可得出一个新的肿瘤相关基质标志物和潜在驱动因子HOPX,随后进行了实验验证。INSPIRE的实现可在http://inspire.cs.washington.edu获取。