Suppr超能文献

韩国长柄山毛榉木材树种分类的卷积神经网络(CNN)性能及性能影响因素。

Performance of convolutional neural network (CNN) and performance influencing factors for wood species classification of Lepidobalanus growing in Korea.

机构信息

Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.

Department of Forestry, Kangwon National University, Chuncheon, 24341, Republic of Korea.

出版信息

Sci Rep. 2024 Aug 5;14(1):18141. doi: 10.1038/s41598-024-69281-y.

Abstract

This study aimed to investigate the performance and factors affecting the species classification of convolutional neural network (CNN) architecture using whole-part and earlywood-part cross-sectional datasets of six Korean Quercus species. The accuracy of species classification for each condition was analyzed using the datasets, data augmentation, and optimizers-stochastic gradient descent (SGD), adaptive moment estimation (Adam), and root mean square propagation (RMSProp)-based on a CNN architecture with three to four convolutional layers. The model trained with the augmented dataset yielded significantly superior results in terms of classification accuracy compared to the model trained with the non-augmented dataset. The augmented dataset was the only factor affecting classification accuracy in the final five epochs. In contrast, four factors in the entire epoch, such as the Adam and SGD optimizers and the earlywood-part and whole-part datasets, affected species classification. The arrangement of earlywood vessels, broad rays, and axial parenchyma was identified as a major influential factor in the CNN species classification using gradient-weighted class activation mapping (Grad-CAM) analysis. The augmented whole-part dataset with the Adam optimizer achieved the highest classification accuracy of 85.7% during the final five epochs of the test phase.

摘要

本研究旨在利用六种韩国栎属树种的整体-部分和早材-部分横切面数据集,探究卷积神经网络(CNN)架构的物种分类性能及其影响因素。采用基于 CNN 架构的三种至四种卷积层的数据集、数据扩充以及优化器(随机梯度下降法(SGD)、自适应矩估计(Adam)和均方根传播(RMSProp)),对每种条件下的物种分类准确率进行了分析。与未经扩充的数据集相比,使用扩充后的数据集训练的模型在分类准确率方面具有显著优势。在最后五个时期,扩充后的数据集是唯一影响分类准确率的因素。相比之下,在整个时期的四个因素,如 Adam 和 SGD 优化器以及早材部分和整体部分数据集,影响了物种分类。使用梯度加权类激活映射(Grad-CAM)分析,鉴定出早材导管、宽射线和轴向薄壁组织的排列是 CNN 物种分类的主要影响因素。在测试阶段的最后五个时期,使用 Adam 优化器的扩充后的整体数据集实现了 85.7%的最高分类准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验