Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
Dryland Agricultural Research Institute (DARI), Agriculture Research, Education and Extension Organization (AREEO), Maragheh, Iran.
BMC Plant Biol. 2024 Aug 6;24(1):750. doi: 10.1186/s12870-024-05463-0.
Chickpea is a key pulse crop grown in the spring in dryland regions. The cold resistance potential of chickpeas allows for the development of genotypes with varying sowing dates to take advantage of autumn and winter rainfall, particularly in dryland regions. In this study, we assessed grain yield, plant height, 100-seed weight, days to maturity, and days to flowering of 17 chickpea genotypes in five autumn-sown dryland regions from 2019 to 2021. Additionally, the response of selected chickpea genotypes to cold stress was examined at temperatures of -4 °C, 4 °C, and 22 °C by analyzing biochemical enzymes.
Mixed linear model of ANOVA revealed a significant genotype × environment interaction for all traits measured, indicating varying reactions of genotypes across test environments. This study reported low estimates of broad-sense heritability for days to flowering (0.34), days to maturity (0.13), and grain yield (0.08). Plant height and seed weight exhibited the highest heritability, with genotypic selection accuracies of 0.73 and 0.92, respectively. Moreover, partial least square regression highlighted the impactful role of rainfall during all months except of October, November, and February on grain yield and its interaction with environments in autumn-planted chickpeas. Among the genotypes studied, G9, G10, and G17 emerged as superior based on stability parameters and grain yield. In particular, genotype G9 stood out as a promising genotype for dryland regions, considering both MTSI and genotype by yield*trait aproaches. The cold assay indicated that - 4 °C is crucial for distinguishing between susceptible and resistant genotypes. The results showed the important role of the enzymes CAT and GPX in contributing to the cold tolerance of genotype G9 in autumn-sown chickpeas.
Significant G×E for agro-morphological traits of chickpea shows prerequisite for multi-trial analysis. Chickpea`s direct root system cause that monthly rainfall during plant establishment has no critical role in its yield interaction with dryland environment. Considering the importance of agro-morphological traits and their direct and indirect effects on grain yield, the utilization of multiple-trait stability approches is propose. Evaluation of chickpea germplasm reaction against cold stress is necessary for autumn-sowing. Finally, autumn sowing of genotype FLIP 10-128 C in dryland conditions can led to significant crop performance.
鹰嘴豆是一种在旱地地区春季种植的主要豆类作物。鹰嘴豆的抗寒潜力使得开发不同播种日期的基因型成为可能,以充分利用秋季和冬季降雨,特别是在旱地地区。在这项研究中,我们在 2019 年至 2021 年期间,在五个旱地地区评估了 17 个鹰嘴豆基因型的籽粒产量、株高、百粒重、成熟天数和开花天数,并在-4°C、4°C 和 22°C 下通过分析生化酶来研究选定的鹰嘴豆基因型对冷胁迫的反应。
方差混合线性模型分析表明,所有测量性状均存在显著的基因型×环境互作,表明基因型在不同试验环境中的反应不同。本研究报道了开花天数(0.34)、成熟天数(0.13)和籽粒产量(0.08)的广义遗传力低估计值。株高和种子重量表现出最高的遗传力,基因型选择准确率分别为 0.73 和 0.92。此外,偏最小二乘回归强调了除 10 月、11 月和 2 月外,所有月份的降雨对籽粒产量及其与秋播鹰嘴豆环境的相互作用的重要影响。在所研究的基因型中,G9、G10 和 G17 基于稳定性参数和籽粒产量被认为是优越的。特别是,基因型 G9 被认为是旱地地区的一个有前途的基因型,同时考虑到 MTSI 和产量*性状的基因型方法。冷测定表明,-4°C 对于区分易感和抗性基因型至关重要。结果表明,CAT 和 GPX 酶在秋播鹰嘴豆中对 G9 基因型的耐寒性起着重要作用。
鹰嘴豆的农艺形态性状存在显著的 G×E,表明需要进行多试验分析。鹰嘴豆的直接根系导致在植物生长期间每月的降雨对其与旱地环境的产量互作没有关键作用。考虑到农艺形态性状及其对籽粒产量的直接和间接影响的重要性,提出了利用多性状稳定性方法。对秋播鹰嘴豆品种对冷胁迫的反应进行评估是必要的。最后,在旱地条件下秋播基因型 FLIP 10-128C 可以显著提高作物产量。