Suppr超能文献

印度查谟和克什米尔喜马拉雅西北部寒冷/冰冻天气条件下种植的鹰嘴豆(鹰嘴豆属)耐寒性评估。

Assessment of cold tolerance in chickpea ( spp.) grown under cold/freezing weather conditions of North-Western Himalayas of Jammu and Kashmir, India.

作者信息

Mir Asma Hamid, Bhat Mohd Ashraf, Dar Sher Ahmad, Sofi Parvaze Ahmad, Bhat Nazir Ahmad, Mir Reyazul Rouf

机构信息

Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, Jammu and Kashmir 193201 India.

Division of Plant Pathology, Mountain Research Center for Field Crops, SKUAST-Kashmir, Sopore, Jammu and Kashmir India.

出版信息

Physiol Mol Biol Plants. 2021 May;27(5):1105-1118. doi: 10.1007/s12298-021-00997-1. Epub 2021 Apr 23.

Abstract

UNLABELLED

Chickpea is one of the most important grain legume crops in the world. India is the largest producer, consumer as well as importer of chickpea. Cold stress (temperature < 15 °C) is one of the important abiotic stresses limiting chickpea production by hampering its growth and vigor at all phenological stages. This study was aimed to characterize a diverse set of 366 chickpea genotypes for cold tolerance and identify most promising cold tolerant chickpea genotypes in the Western-Himalayas of Jammu and Kashmir, India. The 366 genotypes used during the present study including genotypes belonging to cultivated, primary and secondary gene pools of chickpea. Two important approaches were used including visual screening under field conditions and screening under controlled conditions by measuring cell membrane stability through electrolyte leakage tests. The analysis of trait data collected through both the approaches led to the identification of five most promising/candidate cold tolerant chickpea genotypes including one wild genotype "Ortan-066" from secondary gene pool species (C. echinospermum), one wild genotype "Cudi 1-022" from primary gene pool species (C. reticulatum) and three genotypes (IC 116783, ICC 15200 and AGBLG 170004) from the cultivated species (). Wild genotype "Ortan-066" was found best cold tolerance source with the mean Cold Tolerance Rating (CTR) of 2 and Electrolyte Leakage Index (ELI) of 10.82%, followed by wild genotype "Cudi 1-022" (CTR = 3, ELI = 18.89%), and three cultivated genotypes viz., IC 116783, ICC 15200 and AGBL-G-170004, with the mean CTR of 3 and an estimated mean ELI of 21.26%, 21.58% and 21.94%, respectively. The promising, candidate cold tolerant genotypes identified during the present study could be used in chickpea breeding programs aimed at improving cold tolerance of cultivated chickpea worldwide. The candidate lines can be also used for developing bi-parental mapping populations, wild × cultivated introgression lines, transcriptomics and for differential expression analysis of cold tolerant genes in chickpea.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s12298-021-00997-1.

摘要

未标注

鹰嘴豆是世界上最重要的谷物豆类作物之一。印度是鹰嘴豆的最大生产国、消费国和进口国。冷胁迫(温度<15°C)是限制鹰嘴豆生产的重要非生物胁迫之一,它会在鹰嘴豆的所有物候阶段阻碍其生长和活力。本研究旨在对366份鹰嘴豆基因型进行耐寒性鉴定,并在印度查谟和克什米尔的西喜马拉雅地区鉴定出最具潜力的耐寒鹰嘴豆基因型。本研究中使用的366份基因型包括属于鹰嘴豆栽培种、初级和次级基因库的基因型。采用了两种重要方法,包括田间条件下的目测筛选以及通过电解质渗漏试验测量细胞膜稳定性在控制条件下进行筛选。对通过这两种方法收集的性状数据进行分析后,鉴定出了5个最具潜力/候选的耐寒鹰嘴豆基因型,其中包括来自次级基因库物种(刺毛野豌豆)的一个野生基因型“Ortan - 066”、来自初级基因库物种(网脉野豌豆)的一个野生基因型“Cudi 1 - 022”以及来自栽培种的三个基因型(IC 116783、ICC 15200和AGBLG 170004)。野生基因型“Ortan - 066”被发现是最佳的耐寒源,平均耐寒等级(CTR)为2,电解质渗漏指数(ELI)为10.82%,其次是野生基因型“Cudi 1 - 022”(CTR = 3,ELI = 18.89%),以及三个栽培基因型,即IC 116783、ICC 15200和AGBL - G - 170004,平均CTR为3,估计平均ELI分别为21.26%、21.58%和21.94%。本研究中鉴定出的有潜力的候选耐寒基因型可用于鹰嘴豆育种计划,旨在提高全球栽培鹰嘴豆的耐寒性。这些候选品系还可用于构建双亲作图群体、野生×栽培渗入系、转录组学以及鹰嘴豆耐寒基因的差异表达分析。

补充信息

在线版本包含可在10.1007/s12298 - 021 - 00997 - 1获取的补充材料。

相似文献

1
Assessment of cold tolerance in chickpea ( spp.) grown under cold/freezing weather conditions of North-Western Himalayas of Jammu and Kashmir, India.
Physiol Mol Biol Plants. 2021 May;27(5):1105-1118. doi: 10.1007/s12298-021-00997-1. Epub 2021 Apr 23.
3
Novel Sources of Tolerance to Aluminium Toxicity in Wild ( and ) Collections.
Front Plant Sci. 2021 Jun 25;12:678211. doi: 10.3389/fpls.2021.678211. eCollection 2021.
4
Freezing stress response of wild and cultivated chickpeas.
Front Plant Sci. 2024 Feb 5;14:1310459. doi: 10.3389/fpls.2023.1310459. eCollection 2023.
6
Effect of cold stress on polyamine metabolism and antioxidant responses in chickpea.
J Plant Physiol. 2021 Mar-Apr;258-259:153387. doi: 10.1016/j.jplph.2021.153387. Epub 2021 Feb 15.
7

引用本文的文献

5
Freezing stress response of wild and cultivated chickpeas.
Front Plant Sci. 2024 Feb 5;14:1310459. doi: 10.3389/fpls.2023.1310459. eCollection 2023.
6
Unlocking the hidden variation from wild repository for accelerating genetic gain in legumes.
Front Plant Sci. 2022 Nov 9;13:1035878. doi: 10.3389/fpls.2022.1035878. eCollection 2022.
9
Identification of stable heat tolerance QTLs using inter-specific recombinant inbred line population derived from GPF 2 and ILWC 292.
PLoS One. 2021 Aug 9;16(8):e0254957. doi: 10.1371/journal.pone.0254957. eCollection 2021.

本文引用的文献

1
Vernalization response of wild chickpea.
New Phytol. 2002 Jun;154(3):695-701. doi: 10.1046/j.1469-8137.2002.00405.x.
4
Molecular Mapping of Flowering Time Major Genes and QTLs in Chickpea ( L.).
Front Plant Sci. 2017 Jul 6;8:1140. doi: 10.3389/fpls.2017.01140. eCollection 2017.
7
Cold stress and acclimation - what is important for metabolic adjustment?
Plant Biol (Stuttg). 2010 May 1;12(3):395-405. doi: 10.1111/j.1438-8677.2009.00299.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验