Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14850.
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853.
Proc Natl Acad Sci U S A. 2022 Jul 12;119(28):e2116675119. doi: 10.1073/pnas.2116675119. Epub 2022 Jul 8.
Collagen is the most abundant component of mammalian extracellular matrices. As such, the development of materials that mimic the biological and mechanical properties of collagenous tissues is an enduring goal of the biomaterials community. Despite the development of molded and 3D printed collagen hydrogel platforms, their use as biomaterials and tissue engineering scaffolds is hindered by either low stiffness and toughness or processing complexity. Here, we demonstrate the development of stiff and tough biohybrid composites by combining collagen with a zwitterionic hydrogel through simple mixing. This combination led to the self-assembly of a nanostructured fibrillar network of collagen that was ionically linked to the surrounding zwitterionic hydrogel matrix, leading to a composite microstructure reminiscent of soft biological tissues. The addition of 5-15 mg mL collagen and the formation of nanostructured fibrils increased the elastic modulus of the composite system by 40% compared to the base zwitterionic matrix. Most notably, the addition of collagen increased the fracture energy nearly 11-fold ([Formula: see text] 180 J m) and clearly delayed crack initiation and propagation. These composites exhibit elastic modulus ([Formula: see text] 0.180 MJ) and toughness ([Formula: see text]0.617 MJ m) approaching that of biological tissues such as articular cartilage. Maintenance of the fibrillar structure of collagen also greatly enhanced cytocompatibility, improving cell adhesion more than 100-fold with >90% cell viability.
胶原蛋白是哺乳动物细胞外基质中最丰富的成分。因此,开发模仿胶原蛋白组织的生物学和机械性能的材料是生物材料界的一个持久目标。尽管已经开发出了模制和 3D 打印的胶原蛋白水凝胶平台,但由于其刚度和韧性低或加工复杂,它们作为生物材料和组织工程支架的应用受到了限制。在这里,我们通过简单混合胶原蛋白和两性离子水凝胶来展示开发具有高刚度和韧性的生物杂交复合材料的方法。这种组合导致胶原蛋白形成纳米结构的原纤维网络,通过离子键与周围的两性离子水凝胶基质相连,从而形成类似于软生物组织的复合材料微观结构。与基础两性离子基质相比,添加 5-15mg/mL 的胶原蛋白和形成纳米原纤维使复合材料系统的弹性模量增加了 40%。值得注意的是,添加胶原蛋白使断裂能增加了近 11 倍([Formula: see text]180 J m),并且明显延迟了裂纹的起始和扩展。这些复合材料的弹性模量([Formula: see text]0.180 MJ)和韧性([Formula: see text]0.617 MJ m)接近关节软骨等生物组织的水平。胶原蛋白原纤维结构的保持也极大地提高了细胞相容性,使细胞黏附提高了 100 多倍,细胞活力超过 90%。