Ren Cuihong, Chang Zhonghua, Li Kecheng, Wang Xiaofeng, Wang Dongfang, Xu Yiyang, Li Xiaomeng, Li Qian
School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, PR China.
National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
Mater Today Bio. 2024 Jul 9;27:101152. doi: 10.1016/j.mtbio.2024.101152. eCollection 2024 Aug.
Uniaxial cyclic stretching plays a pivotal role in the fields of tissue engineering and regenerative medicine, influencing cell behaviors and functionality based on physical properties, including matrix morphology and mechanical stimuli. This study delves into the response of endothelial cells to uniaxial cyclic strain within the geometric constraints of micro-nano fibers. Various structural scaffold forms of poly(l-lactide--caprolactone) (PLCL), such as flat membranes, randomly oriented fiber membranes, and aligned fiber membranes, were fabricated through solvent casting and electrospinning methods. Our investigation focuses on the morphological variation of endothelial cells under diverse geometric constraints and the mechanical-dependent release of nitric oxide (NO) on oriented fibrous membranes. Our results indicate that while uniaxial cyclic stretching promotes endothelial cell spreading, the anisotropy of the matrix morphology remains the primary driving factor for cell alignment. Additionally, uniaxial cyclic stretching significantly enhances NO release, with a notably stronger effect correlated to the increasing strain amplitude. Importantly, this study reveals that uniaxial cyclic stretching enhances the mRNA expression of key proteins, including talin, vinculin, rac, and nitric oxide synthase (eNOS).
单轴循环拉伸在组织工程和再生医学领域发挥着关键作用,基于物理特性(包括基质形态和机械刺激)影响细胞行为和功能。本研究深入探讨了在微纳米纤维的几何限制范围内内皮细胞对单轴循环应变的反应。通过溶剂浇铸和静电纺丝方法制备了聚(L-丙交酯-己内酯)(PLCL)的各种结构支架形式,如平膜、随机取向纤维膜和排列纤维膜。我们的研究重点是在不同几何限制下内皮细胞的形态变化以及定向纤维膜上一氧化氮(NO)的机械依赖性释放。我们的结果表明,虽然单轴循环拉伸促进内皮细胞铺展,但基质形态的各向异性仍然是细胞排列的主要驱动因素。此外,单轴循环拉伸显著增强NO释放,应变幅度增加时效果明显更强。重要的是,本研究表明单轴循环拉伸增强了关键蛋白的mRNA表达,包括踝蛋白、纽蛋白、Rac和一氧化氮合酶(eNOS)。