Suppr超能文献

慢性阻塞性肺疾病患者的症状负担及其与临床特征的关联:一种聚类分析方法

Symptom burden and its associations with clinical characteristics in patients with COPD: a clustering approach.

作者信息

Houben-Wilke Sarah, Deng Qichen, Janssen Daisy J A, Franssen Frits M E, Spruit Martijn A

机构信息

Department of Research and Development, Ciro, Horn, The Netherlands.

Department of Health Services Research and Department of Family Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands.

出版信息

ERJ Open Res. 2024 Aug 5;10(4). doi: 10.1183/23120541.01052-2023. eCollection 2024 Jul.

Abstract

BACKGROUND

Symptom burden in patients with COPD is often under-recognised. In this cross-sectional analysis, we aimed to study the severity of a variety of (non-)respiratory symptoms in patients with and without COPD and to explore the associations between clusters based on symptom severity and other clinical characteristics.

METHODS

Characteristics were assessed in 538 patients with COPD from primary, secondary and tertiary care and 116 non-COPD participants. The severity of 20 symptoms was measured using a visual analogue scale (VAS), ranging from 0 mm (no symptom) to 100 mm (maximum severity). K-means cluster analysis was applied to symptom severity in the patient sample only.

RESULTS

People with COPD were comparable with non-COPD participants in terms of gender (58% 55% male, p=0.132) and age (64±9 years 63±6 years, p=0.552) and had a reduced forced expiratory volume in 1 s (57±23% predicted 111±17% predicted, p<0.001). The COPD group had higher VAS scores for most symptoms (p<0.05). The most severe symptoms in patients with COPD were dyspnoea, fatigue and muscle weakness while non-COPD participants mainly experienced insomnia and micturition. Three clusters were identified in the patient sample. Health status and care dependency differed between all clusters, while functional mobility, exacerbation history and lung function differed between cluster 1 and the other two clusters (p<0.05).

CONCLUSIONS

People with COPD report a high burden of respiratory as well as non-respiratory symptoms. Cluster analysis demonstrated a co-occurrence of different levels of symptom severity, highlighting the heterogeneity of symptoms experience. Identifying clusters of patients with shared symptom experiences will help us to understand the impact of the disease and define integrated, multidimensional treatment strategies.

摘要

背景

慢性阻塞性肺疾病(COPD)患者的症状负担常常未得到充分认识。在这项横断面分析中,我们旨在研究有和没有COPD的患者中各种(非)呼吸系统症状的严重程度,并探讨基于症状严重程度的聚类与其他临床特征之间的关联。

方法

对来自初级、二级和三级医疗保健机构的538例COPD患者和116例非COPD参与者的特征进行了评估。使用视觉模拟量表(VAS)测量20种症状的严重程度,范围从0毫米(无症状)到100毫米(最大严重程度)。仅对患者样本中的症状严重程度应用K均值聚类分析。

结果

COPD患者与非COPD参与者在性别(男性分别为58%和55%,p = 0.132)和年龄(64±9岁和63±6岁,p = 0.552)方面具有可比性,且1秒用力呼气量降低(预计值分别为57±23%和111±17%,p<0.001)。COPD组大多数症状的VAS评分更高(p<0.05)。COPD患者中最严重的症状是呼吸困难、疲劳和肌肉无力,而非COPD参与者主要经历失眠和排尿问题。在患者样本中识别出三个聚类。所有聚类之间的健康状况和护理依赖程度不同,而功能活动能力、加重病史和肺功能在聚类1与其他两个聚类之间存在差异(p<0.05)。

结论

COPD患者报告了较高的呼吸系统和非呼吸系统症状负担。聚类分析表明不同程度的症状严重程度同时存在,突出了症状体验的异质性。识别具有共同症状体验的患者聚类将有助于我们了解疾病的影响并确定综合、多维的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70c8/11299006/99eaf055ae78/01052-2023.01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验