Suppr超能文献

基于基因组驱动的人工智能模型对乳腺浸润性小叶癌进行分类,并发现 CDH1 失活机制。

A Genomics-Driven Artificial Intelligence-Based Model Classifies Breast Invasive Lobular Carcinoma and Discovers CDH1 Inactivating Mechanisms.

机构信息

Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.

Paige AI, New York, New York.

出版信息

Cancer Res. 2024 Oct 15;84(20):3478-3489. doi: 10.1158/0008-5472.CAN-24-1322.

Abstract

Artificial intelligence (AI) systems can improve cancer diagnosis, yet their development often relies on subjective histologic features as ground truth for training. Herein, we developed an AI model applied to histologic whole-slide images using CDH1 biallelic mutations, pathognomonic for invasive lobular carcinoma (ILC) in breast neoplasms, as ground truth. The model accurately predicted CDH1 biallelic mutations (accuracy = 0.95) and diagnosed ILC (accuracy = 0.96). A total of 74% of samples classified by the AI model as having CDH1 biallelic mutations but lacking these alterations displayed alternative CDH1 inactivating mechanisms, including a deleterious CDH1 fusion gene and noncoding CDH1 genetic alterations. Analysis of internal and external validation cohorts demonstrated 0.95 and 0.89 accuracy for ILC diagnosis, respectively. The latent features of the AI model correlated with human-explainable histopathologic features. Taken together, this study reports the construction of an AI algorithm trained using a genetic rather than histologic ground truth that can robustly classify ILCs and uncover CDH1 inactivating mechanisms, providing the basis for orthogonal ground truth utilization for development of diagnostic AI models applied to whole-slide image. Significance: Genetic alterations linked to strong genotypic-phenotypic correlations can be utilized to develop AI systems applied to pathology that facilitate cancer diagnosis and biologic discoveries.

摘要

人工智能(AI)系统可以改善癌症诊断,但它们的开发通常依赖于作为训练ground truth 的主观组织学特征。在此,我们开发了一种应用于组织学全切片图像的 AI 模型,该模型以乳腺癌肿瘤中具有特征性的 CDH1 双等位基因突变作为 ground truth。该模型准确预测了 CDH1 双等位基因突变(准确率=0.95)和诊断出浸润性小叶癌(ILC)(准确率=0.96)。共有 74%的 AI 模型分类为具有 CDH1 双等位基因突变但缺乏这些改变的样本显示出替代的 CDH1 失活机制,包括有害的 CDH1 融合基因和非编码 CDH1 遗传改变。对内部和外部验证队列的分析分别显示出 ILC 诊断的准确率为 0.95 和 0.89。AI 模型的潜在特征与人类可解释的组织病理学特征相关。总之,本研究报告了一种使用遗传而不是组织学 ground truth 训练的 AI 算法的构建,该算法可以可靠地对 ILC 进行分类并揭示 CDH1 失活机制,为开发应用于全切片图像的诊断 AI 模型提供了正交 ground truth 利用的基础。意义:与强基因型-表型相关性相关的遗传改变可用于开发应用于病理学的 AI 系统,以促进癌症诊断和生物学发现。

相似文献

8
Germline CDH1 mutations in bilateral lobular carcinoma in situ.双侧乳腺小叶原位癌中的胚系 CDH1 突变。
Br J Cancer. 2014 Feb 18;110(4):1053-7. doi: 10.1038/bjc.2013.792. Epub 2013 Dec 24.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验