Saldanha Oliver Lester, Loeffler Chiara M L, Niehues Jan Moritz, van Treeck Marko, Seraphin Tobias P, Hewitt Katherine Jane, Cifci Didem, Veldhuizen Gregory Patrick, Ramesh Siddhi, Pearson Alexander T, Kather Jakob Nikolas
Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany.
Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
NPJ Precis Oncol. 2023 Mar 28;7(1):35. doi: 10.1038/s41698-023-00365-0.
The histopathological phenotype of tumors reflects the underlying genetic makeup. Deep learning can predict genetic alterations from pathology slides, but it is unclear how well these predictions generalize to external datasets. We performed a systematic study on Deep-Learning-based prediction of genetic alterations from histology, using two large datasets of multiple tumor types. We show that an analysis pipeline that integrates self-supervised feature extraction and attention-based multiple instance learning achieves a robust predictability and generalizability.
肿瘤的组织病理学表型反映了其潜在的基因组成。深度学习可以从病理切片预测基因改变,但尚不清楚这些预测在外部数据集上的泛化程度如何。我们使用两个包含多种肿瘤类型的大型数据集,对基于深度学习从组织学预测基因改变进行了系统研究。我们表明,一个整合了自监督特征提取和基于注意力的多实例学习的分析管道实现了强大的可预测性和泛化能力。