Suppr超能文献

基于自监督注意力的深度学习用于从组织病理学进行泛癌突变预测。

Self-supervised attention-based deep learning for pan-cancer mutation prediction from histopathology.

作者信息

Saldanha Oliver Lester, Loeffler Chiara M L, Niehues Jan Moritz, van Treeck Marko, Seraphin Tobias P, Hewitt Katherine Jane, Cifci Didem, Veldhuizen Gregory Patrick, Ramesh Siddhi, Pearson Alexander T, Kather Jakob Nikolas

机构信息

Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany.

Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.

出版信息

NPJ Precis Oncol. 2023 Mar 28;7(1):35. doi: 10.1038/s41698-023-00365-0.

Abstract

The histopathological phenotype of tumors reflects the underlying genetic makeup. Deep learning can predict genetic alterations from pathology slides, but it is unclear how well these predictions generalize to external datasets. We performed a systematic study on Deep-Learning-based prediction of genetic alterations from histology, using two large datasets of multiple tumor types. We show that an analysis pipeline that integrates self-supervised feature extraction and attention-based multiple instance learning achieves a robust predictability and generalizability.

摘要

肿瘤的组织病理学表型反映了其潜在的基因组成。深度学习可以从病理切片预测基因改变,但尚不清楚这些预测在外部数据集上的泛化程度如何。我们使用两个包含多种肿瘤类型的大型数据集,对基于深度学习从组织学预测基因改变进行了系统研究。我们表明,一个整合了自监督特征提取和基于注意力的多实例学习的分析管道实现了强大的可预测性和泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bfa/10050159/a56040785c25/41698_2023_365_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验