Suppr超能文献

钆增强T2液体衰减反转恢复序列是脑转移瘤患者放射性坏死和肿瘤进展的影像学生物标志物。

Gadolinium-Enhanced T2 FLAIR Is an Imaging Biomarker of Radiation Necrosis and Tumor Progression in Patients with Brain Metastases.

作者信息

Heyn Chris, Bishop Jonathan, Moody Alan R, Kang Tony, Wong Erin, Howard Peter, Maralani Pejman, Symons Sean, MacIntosh Bradley J, Keith Julia, Lim-Fat Mary Jane, Perry James, Myrehaug Sten, Detsky Jay, Tseng Chia-Lin, Chen Hanbo, Sahgal Arjun, Soliman Hany

机构信息

From the Department of Medical Imaging (C.H., J.B., A.R.M., T.K., E.W., P.H., P.M., S.S.), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada

Department of Medical Imaging (C.H., A.R.M., T.K., E.W., P.H., P.M., S.S.), University of Toronto, Toronto, Ontario, Canada.

出版信息

AJNR Am J Neuroradiol. 2025 Jan 8;46(1):129-135. doi: 10.3174/ajnr.A8431.

Abstract

BACKGROUND AND PURPOSE

Differentiating radiation necrosis (RN) from tumor progression (TP) after radiation therapy for brain metastases is an important clinical problem requiring advanced imaging techniques that may not be widely available and are challenging to perform at multiple time points. The ability to leverage conventional MRI for this problem could have a meaningful clinical impact. The purpose of this study was to explore contrast-enhanced T2 FLAIR (T2FLAIRc) as a new imaging biomarker of RN and TP.

MATERIALS AND METHODS

This single-institution retrospective study included patients with treated brain metastases undergoing DSC-MRI between January 2021 and June 2023. Reference standard assessment was based on histopathology or serial follow-up, including the results of DSC-MRI for a minimum of 6 months from the first DSC-MRI. The index test was implemented as part of the institutional brain tumor MRI protocol and preceded the first DSC-MRI. T2FLAIRc and gadolinium-enhanced T1 (T1c) MPRAGE signal were normalized against normal brain parenchyma and expressed as a score. The mean signal intensity of enhancing disease for the RN and TP groups was compared using an unpaired test. Receiver operating characteristic curves and area under the receiver operating characteristic curve (AUC) were derived by bootstrapping. The DeLong test was used to compare AUCs.

RESULTS

Fifty-six participants (mean age, 62 [SD, 12.7] years; 39 women; 28 with RN, 28 with TP) were evaluated. The index MRI was performed, on average, 73 [SD, 34] days before the first DSC-MRI. Significantly higher scores were found for RN using T2FLAIRc (8.3 versus 5.8, < .001) and T1c (4.1 versus 3.5, = .02). The AUC for T2FLAIRc (0.83; 95% CI, 0.72-0.92) was greater than that for T1c (0.70; 95% CI, 0.56-0.83) (= .04). The AUC of DSC-derived relative CBV (0.82; 95% CI, 0.70-0.93) was not significantly different from that of T2FLAIRc (= .9).

CONCLUSIONS

A higher normalized T1c and T2FLAIRc signal intensity was found for RN. In a univariable test, the mean T2FLAIRc signal intensity of enhancing voxels showed good discrimination performance for distinguishing RN from TP. The results of this work demonstrate the potential of T2FLAIRc as an imaging biomarker in the work-up of RN in patients with brain metastases.

摘要

背景与目的

在脑转移瘤放疗后,鉴别放射性坏死(RN)与肿瘤进展(TP)是一个重要的临床问题,这需要先进的成像技术,而这些技术可能无法广泛获取,并且在多个时间点进行操作具有挑战性。利用传统磁共振成像(MRI)解决这一问题的能力可能会产生有意义的临床影响。本研究的目的是探索对比增强T2液体衰减反转恢复序列(T2FLAIRc)作为RN和TP的一种新的成像生物标志物。

材料与方法

这项单机构回顾性研究纳入了2021年1月至2023年6月期间接受过弥散加权对比增强磁共振成像(DSC-MRI)检查的脑转移瘤患者。参考标准评估基于组织病理学或系列随访,包括从首次DSC-MRI起至少6个月的DSC-MRI结果。指标检测作为机构脑肿瘤MRI检查方案的一部分实施,且在首次DSC-MRI之前进行。T2FLAIRc和钆增强T1(T1c)磁化准备快速梯度回波(MPRAGE)信号相对于正常脑实质进行标准化,并表示为一个分数。使用非配对t检验比较RN组和TP组强化病变的平均信号强度。通过自抽样得出受试者工作特征曲线及受试者工作特征曲线下面积(AUC)。使用德龙检验比较AUC。

结果

共评估了56名参与者(平均年龄62[标准差,12.7]岁;39名女性;28名患有RN,28名患有TP)。指标MRI平均在首次DSC-MRI前73[标准差,34]天进行。使用T2FLAIRc时,RN的分数显著更高(8.3对5.8,P<0.001),使用T1c时也是如此(4.1对3.5,P = 0.02)。T2FLAIRc的AUC(0.83;95%可信区间,0.72 - 0.92)大于T1c的AUC(0.70;95%可信区间,0.56 - 0.83)(P = 0.04)。DSC衍生的相对脑血容量(rCBV)的AUC(0.82;95%可信区间,0.70 - 0.93)与T2FLAIRc的AUC无显著差异(P = 0.9)。

结论

发现RN的T1c和T2FLAIRc信号强度标准化后更高。在单变量检验中,强化体素的平均T2FLAIRc信号强度在区分RN与TP方面表现出良好的鉴别性能。这项工作的结果证明了T2FLAIRc作为脑转移瘤患者RN检查中成像生物标志物的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验