Mehrabian Hatef, Chan Rachel W, Sahgal Arjun, Chen Hanbo, Theriault Aimee, Lam Wilfred W, Myrehaug Sten, Tseng Chia-Lin, Husain Zain, Detsky Jay, Soliman Hany, Stanisz Greg J
Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.
Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.
J Magn Reson Imaging. 2023 Jun;57(6):1713-1725. doi: 10.1002/jmri.28440. Epub 2022 Oct 11.
High radiation doses of stereotactic radiosurgery (SRS) for brain metastases (BM) can increase the likelihood of radiation necrosis (RN). Advanced MRI sequences can improve the differentiation between RN and tumor progression (TP).
To use saturation transfer MRI methods including chemical exchange saturation transfer (CEST) and magnetization transfer (MT) to distinguish RN from TP.
Prospective cohort study.
Seventy patients (median age 60; 73% females) with BM (75 lesions) post-SRS.
FIELD STRENGTH/SEQUENCE: 3-T, CEST imaging using low/high-power (saturation B = 0.52 and 2.0 μT), quantitative MT imaging using B = 1.5, 3.0, and 5.0 μT, WAter Saturation Shift Referencing (WASSR), WAter Shift And B (WASABI), T , and T mapping. All used gradient echoes except T mapping (gradient and spin echo).
Voxel-wise metrics included: magnetization transfer ratio (MTR); apparent exchange-dependent relaxation (AREX); MTR asymmetry; normalized MT exchange rate and pool size product; direct water saturation peak width; and the observed T and T . Regions of interests (ROIs) were manually contoured on the post-Gd T w. The mean (of median ROI values) was compared between groups. Clinical outcomes were determined by clinical and radiologic follow-up or histopathology.
t-Test, univariable and multivariable logistic regression, receiver operating characteristic, and area under the curve (AUC) with sensitivity/specificity values with the optimal cut point using the Youden index, Akaike information criterion (AIC), Cohen's d. P < 0.05 with Bonferroni correction was considered significant.
Seven metrics showed significant differences between RN and TP. The high-power MTR showed the highest AUC of 0.88, followed by low-power MTR (AUC = 0.87). The combination of low-power CEST scans improved the separation compared to individual parameters (with an AIC of 70.3 for low-power MTR/AREX). Cohen's d effect size showed that the MTR provided the largest effect sizes among all metrics.
Significant differences between RN and TP were observed based on saturation transfer MRI.
3 Technical Efficacy: Stage 2.
脑转移瘤(BM)的立体定向放射外科(SRS)高辐射剂量会增加放射性坏死(RN)的可能性。先进的MRI序列可改善RN与肿瘤进展(TP)之间的鉴别。
使用包括化学交换饱和转移(CEST)和磁化转移(MT)在内的饱和转移MRI方法区分RN与TP。
前瞻性队列研究。
70例SRS术后患有BM(75个病灶)的患者(中位年龄60岁;73%为女性)。
场强/序列:3-T,使用低/高功率(饱和B = 0.52和2.0 μT)的CEST成像,使用B = 1.5、3.0和5.0 μT的定量MT成像,水饱和位移参考(WASSR),水位移与B(WASABI),T1和T2映射。除T2映射(梯度和自旋回波)外,均使用梯度回波。
体素级指标包括:磁化转移率(MTR);表观交换依赖性弛豫(AREX);MTR不对称性;归一化MT交换率和池大小乘积;直接水饱和峰宽度;以及观察到的T1和T2。在钆增强T1加权像上手动勾勒感兴趣区域(ROI)。比较组间(ROI值中位数的)平均值。临床结局通过临床和影像学随访或组织病理学确定。
t检验、单变量和多变量逻辑回归、受试者工作特征曲线以及曲线下面积(AUC),使用约登指数、赤池信息准则(AIC)、科恩d值计算具有最佳切点的敏感性/特异性值。经邦费罗尼校正后P < 0.05被认为具有统计学意义。
七个指标在RN和TP之间显示出显著差异。高功率MTR的AUC最高,为0.88,其次是低功率MTR(AUC = 0.87)。与单个参数相比,低功率CEST扫描的组合改善了区分效果(低功率MTR/AREX的AIC为70.3)。科恩d效应量表明,MTR在所有指标中效应量最大。
基于饱和转移MRI观察到RN和TP之间存在显著差异。
3 技术效能:2级。