Suppr超能文献

西方红雪松基因组选择:从概念验证到实际应用。

Genomic selection in western redcedar: from proof of concept to operational application.

机构信息

Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.

Pharmacognosy Department, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.

出版信息

New Phytol. 2024 Oct;244(2):588-602. doi: 10.1111/nph.20022. Epub 2024 Aug 6.

Abstract

Forests face many threats. While traditional breeding may be too slow to deliver well-adapted trees, genomic selection (GS) can accelerate the process. We describe a comprehensive study of GS from proof of concept to operational application in western redcedar (WRC, Thuja plicata). Using genomic data, we developed models on a training population (TrP) of trees to predict breeding values (BVs) in a target seedling population (TaP) for growth, heartwood chemistry, and foliar chemistry traits. We used cross-validation to assess prediction accuracy (PACC) in the TrP; we also validated models for early-expressed foliar traits in the TaP. Prediction accuracy was high across generations, environments, and ages. PACC was not reduced to zero among unrelated individuals in TrP and was only slightly reduced in the TaP, confirming strong linkage disequilibrium and the ability of the model to generate accurate predictions across breeding generations. Genomic BV predictions were correlated with those from pedigree but displayed a wider range of within-family variation due to the ability of GS to capture the Mendelian sampling term. Using predicted TaP BVs in multi-trait selection, we functionally implemented and integrated GS into an operational tree-breeding program.

摘要

森林面临许多威胁。虽然传统的育种可能太慢,无法培育出适应性强的树木,但基因组选择 (GS) 可以加速这一过程。我们描述了一项从概念验证到西部红雪松(WRC,Thuja plicata)实际应用的综合 GS 研究。我们使用基因组数据,在树木的训练群体 (TrP) 上开发模型,以预测目标幼苗群体 (TaP) 中生长、心材化学和叶片化学性状的育种值 (BVs)。我们使用交叉验证来评估 TrP 中的预测准确性 (PACC);我们还验证了 TaP 中早期表达叶片性状的模型。跨世代、环境和年龄的预测准确性都很高。在 TrP 中,与无亲缘关系的个体之间的 PACC 并未降至零,而在 TaP 中仅略有降低,这证实了强连锁不平衡和模型在整个育种世代中生成准确预测的能力。基因组 BV 预测与系谱预测相关,但由于 GS 能够捕获孟德尔抽样项,因此显示出更大的家系内变异范围。我们使用预测的 TaP BVs 进行多性状选择,在操作层面上实现并整合了 GS 到树木育种计划中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验