Padinjareveetil Akshay Kumar K, Pykal Martin, Bakandritsos Aristides, Zbořil Radek, Otyepka Michal, Pumera Martin
Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic.
Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, 783 71, Czech Republic.
Adv Sci (Weinh). 2024 Oct;11(39):e2307583. doi: 10.1002/advs.202307583. Epub 2024 Aug 6.
Water molecules confined in nanoscale spaces of 2D graphene layers have fascinated researchers worldwide for the past several years, especially in the context of energy storage applications. The water molecules exchanged along with ions during the electrochemical process can aid in wetting and stabilizing the layered materials resulting in an anomalous enhancement in the performance of supercapacitor electrodes. Engineering of 2D carbon electrode materials with various functionalities (oxygen (─O), fluorine (─F), nitrile (─C≡N), carboxylic (─COOH), carbonyl (─C═O), nitrogen (─N)) can alter the ion/water organization in graphene derivatives, and eventually their inherent ion storage ability. Thus, in the current study, a comparative set of functionalized graphene derivatives-fluorine-doped cyanographene (G-F-CN), cyanographene (G-CN), graphene acid (G-COOH), oxidized graphene acid (G-COOH (O)) and nitrogen superdoped graphene (G-N) is systematically evaluated toward charge storage in various aqueous-based electrolyte systems. Differences in functionalization on graphene derivatives influence the electrochemical properties, and the real-time mass exchange during the electrochemical process is monitored by electrochemical quartz crystal microbalance (EQCM). Electrogravimetric assessment revealed that oxidized 2D acid derivatives (G-COOH (O)) are shown to exhibit high ion storage performance along with maximum water transfer during the electrochemical process. The complex understanding of the processes gained during supercapacitor electrode charging in aqueous electrolytes paves the way toward the rational utilization of graphene derivatives in forefront energy storage applications.
在过去几年中,二维石墨烯层纳米级空间中受限的水分子吸引了全球研究人员的关注,特别是在储能应用方面。在电化学过程中与离子一起交换的水分子有助于润湿和稳定层状材料,从而导致超级电容器电极性能异常增强。对具有各种功能(氧(─O)、氟(─F)、腈(─C≡N)、羧基(─COOH)、羰基(─C═O)、氮(─N))的二维碳电极材料进行工程设计,可以改变石墨烯衍生物中的离子/水结构,最终改变其固有的离子存储能力。因此,在本研究中,系统地评估了一组功能化石墨烯衍生物——氟掺杂氰基石墨烯(G-F-CN)、氰基石墨烯(G-CN)、石墨烯酸(G-COOH)、氧化石墨烯酸(G-COOH(O))和氮超掺杂石墨烯(G-N)在各种水基电解质体系中的电荷存储性能。石墨烯衍生物功能化的差异会影响其电化学性能,并且通过电化学石英晶体微天平(EQCM)监测电化学过程中的实时质量交换。电重量分析评估表明,氧化的二维酸衍生物(G-COOH(O))在电化学过程中表现出高离子存储性能以及最大的水转移量。对水基电解质中超级电容器电极充电过程的深入理解为石墨烯衍生物在前沿储能应用中的合理利用铺平了道路。