Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany.
Université Paul Sabatier, CIRIMAT UMR CNRS 5085, Toulouse 31062, France.
J Am Chem Soc. 2022 Aug 10;144(31):14217-14225. doi: 10.1021/jacs.2c04841. Epub 2022 Aug 1.
Fundamental understanding of ion electroadsorption processes in porous electrodes on a molecular level provides important guidelines for next-generation energy storage devices like electric double layer capacitors (EDLCs). Porous carbons functionalized by heteroatoms show enhanced capacitive performance, but the underlying mechanism is still elusive, due to the lack of reliable tools to precisely identify multiple N species and establish clear structure property relations. Here, we use advanced analytical techniques such as low-temperature solid-state NMR (ssNMR) and electrochemical quartz crystal microbalance (EQCM) to relate the complex nitrogen functionalities to the charging mechanisms and capacitive performance. For the first time, it is demonstrated at a molecular level that N-doping strongly influences the electroadsorption mechanism in EDLCs. Without N-doping, anion (SO) adsorption-desorption dominates the charging mechanism, whereas after doping, Li electroadsorption plays a key role. With the help of EQCM, it is demonstrated that SO is strongly immobilized on the N-doped surface, leaving Li as the main charge carrier. The smaller size and higher concentration of Li compared to SO benefit a higher capacitance. Amine/amide N is responsible for high capacitance, but surprisingly the pyridinic, pyrrolic, and graphitic N groups have no significant influence. 2D H-N NMR spectroscopy indicates that the conversion from pyridinium to pyrrolic N gives rise to a slightly decreased capacitance. This work not only demonstrates ssNMR as a powerful tool for surface chemistry characterization of electrode materials but also uncovers the related charging mechanism by EQCM, paving the way toward a comprehensive picture of EDLC chemistry.
在分子水平上对多孔电极中离子电吸附过程的基本理解为下一代储能设备(如双电层电容器(EDLC))提供了重要的指导。杂原子功能化的多孔碳显示出增强的电容性能,但由于缺乏可靠的工具来精确识别多种 N 物种并建立明确的结构-性能关系,其潜在机制仍难以捉摸。在这里,我们使用先进的分析技术,如低温固态 NMR(ssNMR)和电化学石英晶体微天平(EQCM),将复杂的氮官能团与充电机制和电容性能联系起来。首次在分子水平上证明,N 掺杂强烈影响 EDLC 中的电吸附机制。没有 N 掺杂时,阴离子(SO)吸附-解吸主导充电机制,而掺杂后,Li 电吸附起关键作用。借助 EQCM,证明 SO 被强烈固定在 N 掺杂的表面上,使 Li 成为主要的电荷载流子。与 SO 相比,Li 的尺寸更小且浓度更高,这有利于更高的电容。胺/酰胺 N 是高电容的原因,但令人惊讶的是,吡啶、吡咯和石墨 N 基团没有明显影响。2D H-NMR 光谱表明,从吡啶鎓到吡咯 N 的转化导致电容略有降低。这项工作不仅展示了 ssNMR 作为电极材料表面化学表征的强大工具,还通过 EQCM 揭示了相关的充电机制,为全面了解 EDLC 化学铺平了道路。