Li Shing Hiung Darren L C Y, Schuster Jasmin M, Duncan Murray I, Payne Nicholas L, Helmuth Brian, Chu Jackson W F, Baum Julia K, Brambilla Viviana, Bruno John, Davies Sarah W, Dornelas Maria, Gagnon Patrick, Guy-Haim Tamar, Jackson Jennifer M, Leichter James J, Madin Joshua S, Monteith Zachary L, Queirós Ana M, Schneider Eric V C, Starko Samuel, Talwar Brendan S, Wyatt Alex S J, Aichelman Hannah E, Bensoussan Nathaniel, Caruso Carlo, Castillo Karl, Choi Francis, Dong Yun-Wei, Garrabou Joaquim, Guillemain Dorian, Higgs Nicholas, Jiang Yuwu, Kersting Diego K, Kushner David J, Longo Guilherme O, Neufeld Christopher, Peirache Marion, Smyth Tim, Sprague Joshua L, Urvoy Gaëlle, Zuberer Frederic, Bates Amanda E
Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John's, NL, Canada A1C 5S7.
Oceans and Cryosphere Centre, Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS 7004, Australia.
PNAS Nexus. 2024 Aug 6;3(8):pgae260. doi: 10.1093/pnasnexus/pgae260. eCollection 2024 Aug.
As on land, oceans exhibit high temporal and spatial temperature variation. This "ocean weather" contributes to the physiological and ecological processes that ultimately determine the patterns of species distribution and abundance, yet is often unrecognized, especially in tropical oceans. Here, we tested the paradigm of temperature stability in shallow waters (<12.5 m) across different zones of latitude. We collated hundreds of in situ, high temporal-frequency ocean temperature time series globally to produce an intuitive measure of temperature variability, ranging in scale from quarter-diurnal to annual time spans. To estimate organismal sensitivity of ectotherms (i.e. microbes, algae, and animals whose body temperatures depend upon ocean temperature), we computed the corresponding range of biological rates (such as metabolic rate or photosynthesis) for each time span, assuming an exponential relationship. We found that subtropical regions had the broadest temperature ranges at time spans equal to or shorter than a month, while temperate and tropical systems both exhibited narrow (i.e. stable) short-term temperature range estimates. However, temperature-dependent biological rates in tropical regions displayed greater ranges than in temperate systems. Hence, our results suggest that tropical ectotherms may be relatively more sensitive to short-term thermal variability. We also highlight previously unexplained macroecological patterns that may be underpinned by short-term temperature variability.
与陆地一样,海洋也呈现出高度的时空温度变化。这种“海洋天气”影响着生理和生态过程,而这些过程最终决定了物种分布和丰度的模式,但往往未被认识到,尤其是在热带海洋。在这里,我们测试了不同纬度区域浅水区(<12.5米)温度稳定性的范例。我们整理了全球数百个原位、高时间频率的海洋温度时间序列,以得出一个直观的温度变异性度量,其时间尺度从四分之一日到年度不等。为了估计变温动物(即体温依赖于海洋温度的微生物、藻类和动物)的机体敏感性,我们假设存在指数关系,计算了每个时间跨度内相应的生物速率范围(如代谢速率或光合作用)。我们发现,在时间跨度等于或短于一个月时,亚热带地区的温度范围最广,而温带和热带系统的短期温度范围估计都较窄(即稳定)。然而,热带地区依赖温度的生物速率范围比温带系统更大。因此,我们的结果表明,热带变温动物可能对短期热变异性相对更敏感。我们还强调了以前无法解释的宏观生态模式,这些模式可能由短期温度变异性所支撑。