Plomer Solveig, Meyer Annika, Gebhardt Philipp, Ernst Theresa, Schleiff Enrico, Schneider Gaby
Institute of Mathematics Goethe University Frankfurt Frankfurt Germany.
Faculty of Biological Sciences Goethe University Frankfurt Frankfurt Germany.
Ecol Evol. 2024 Aug 6;14(8):e70092. doi: 10.1002/ece3.70092. eCollection 2024 Aug.
In movement analysis, correlated random walk (CRW) models often use so-called turning angles, which are measured relative to the previous movement direction. To segregate between different movement modes, hidden Markov models (HMMs) describe movements as piecewise stationary CRWs in which the distributions of turning angles and step sizes depend on the underlying state. This typically allows for the segregation of movement modes that show different movement speeds. We show that in some cases, it may be interesting to investigate absolute angles, that is, biased random walks (BRWs) instead of turning angles. In particular, while discrimination between states in the turning angle setting can only rely on movement speed, models with absolute angles can be used to discriminate between sections of different movement directions. A preprocessing algorithm is provided that enables the analysis of absolute angles in the existing R package moveHMM. In a data set of movements of cell organelles, models using not the turning angle but the absolute angle could capture interesting additional properties. Goodness-of-fit was increased for HMMs with absolute angles, and HMMs with absolute angles tended to choose a higher number of states, suggesting the existence and relevance of prominent directional changes in the present data set. These results suggest that models with absolute angles can provide important information in the analysis of movement patterns if the existence and frequency of directional changes is of biological importance.
在运动分析中,相关随机游走(CRW)模型通常使用所谓的转向角,转向角是相对于先前的运动方向测量的。为了区分不同的运动模式,隐马尔可夫模型(HMM)将运动描述为分段平稳的CRW,其中转向角和步长的分布取决于潜在状态。这通常允许区分显示不同运动速度的运动模式。我们表明,在某些情况下,研究绝对角度(即有偏随机游走,BRW)而不是转向角可能会很有趣。特别是,虽然在转向角设置中状态之间的区分只能依赖于运动速度,但具有绝对角度的模型可用于区分不同运动方向的部分。提供了一种预处理算法,该算法能够在现有的R包moveHMM中分析绝对角度。在一个细胞器运动的数据集里,使用绝对角度而非转向角的模型能够捕捉到有趣的额外特性。具有绝对角度的HMM的拟合优度有所提高,并且具有绝对角度的HMM倾向于选择更多的状态,这表明在当前数据集中存在显著的方向变化且具有相关性。这些结果表明,如果方向变化的存在和频率具有生物学重要性,那么具有绝对角度的模型可以在运动模式分析中提供重要信息。