Suppr超能文献

不规则或稀疏采样曲线的弹性分析。

Elastic analysis of irregularly or sparsely sampled curves.

机构信息

School of Business and Economics, Chair of Statistics, Humboldt-Universität zu Berlin, Berlin, Germany.

出版信息

Biometrics. 2023 Sep;79(3):2103-2115. doi: 10.1111/biom.13706. Epub 2022 Jul 4.

Abstract

We provide statistical analysis methods for samples of curves in two or more dimensions, where the image, but not the parameterization of the curves, is of interest and suitable alignment/registration is thus necessary. Examples are handwritten letters, movement paths, or object outlines. We focus in particular on the computation of (smooth) means and distances, allowing, for example, classification or clustering. Existing parameterization invariant analysis methods based on the elastic distance of the curves modulo parameterization, using the square-root-velocity framework, have limitations in common realistic settings where curves are irregularly and potentially sparsely observed. We propose using spline curves to model smooth or polygonal (Fréchet) means of open or closed curves with respect to the elastic distance and show identifiability of the spline model modulo parameterization. We further provide methods and algorithms to approximate the elastic distance for irregularly or sparsely observed curves, via interpreting them as polygons. We illustrate the usefulness of our methods on two datasets. The first application classifies irregularly sampled spirals drawn by Parkinson's patients and healthy controls, based on the elastic distance to a mean spiral curve computed using our approach. The second application clusters sparsely sampled GPS tracks based on the elastic distance and computes smooth cluster means to find new paths on the Tempelhof field in Berlin. All methods are implemented in the R-package "elasdics" and evaluated in simulations.

摘要

我们提供了用于二维或更多维曲线样本的统计分析方法,其中感兴趣的是图像,而不是曲线的参数化,因此需要适当的对齐/配准。例如手写字母、运动路径或物体轮廓。我们特别关注(平滑)均值和距离的计算,例如允许分类或聚类。现有的基于曲线参数化模弹性距离的参数不变分析方法,使用平方根速度框架,在曲线不规则且可能稀疏观测的常见实际情况下存在局限性。我们建议使用样条曲线来建模关于弹性距离的开放或闭合曲线的平滑或多边形(Fréchet)均值,并证明样条模型在参数化模下的可识别性。我们进一步提供了用于不规则或稀疏观测曲线的弹性距离的近似方法,通过将它们解释为多边形。我们在两个数据集上说明了我们方法的有用性。第一个应用程序基于使用我们的方法计算的到平均螺旋曲线的弹性距离,对帕金森病患者和健康对照者绘制的不规则采样螺旋进行分类。第二个应用程序基于弹性距离对稀疏采样的 GPS 轨迹进行聚类,并计算平滑的聚类均值,以在柏林的滕珀尔霍夫场找到新路径。所有方法都在 R 包“elasdics”中实现,并在模拟中进行了评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验