Suppr超能文献

基于美国食品药品监督管理局不良事件报告系统(FAERS)数据库的真实世界数据对曲氟尿苷/替匹嘧啶不良事件进行信号挖掘与分析。

Signal mining and analysis of trifluridine/tipiracil adverse events based on real-world data from the FAERS database.

作者信息

Hu Yongli, Du Yan, Qiu Zhisheng, Zhu Chenglou, Wang Junhong, Liang Tong, Liu Tianxiang, Da Mingxu

机构信息

The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China.

Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China.

出版信息

Front Pharmacol. 2024 Jul 23;15:1399998. doi: 10.3389/fphar.2024.1399998. eCollection 2024.

Abstract

OBJECTIVE

The objective of this research is to scrutinize adverse events (AEs) linked to Trifluridine/Tipiracil (TFTD/TPI), using data from the FDA Adverse Event Reporting System (FAERS) database.

METHODS

The AEs data related to TFTD/TPI were collected from the fourth quarter of 2015 through the fourth quarter of 2023. After normalizing the data, multiple signal quantification techniques including Proportional Reporting Ratio (PRR), Reporting Odds Ratio (ROR), Bayesian approaches such as Bayesian Confidence Propagation Neural Network (BCPNN) and the Multi-item Gamma Poisson Shrinker (MGPS) were used for overall and subgroup analysis and visualization analyses were performed.

RESULTS

From the FAERS database, we analyzed 13,520,073 reports, identifying 8,331 as primary suspect (PS) AEs for TFTD/TPI, occurring across 27 organ systems. The study retained 99 significant disproportionality Preferred Terms (PTs) across four algorithms and unveiled unexpected serious AEs such as iron deficiency and intestinal perforation, hepatic failure, cholangitis and so on. The median onset of TFTD/TPI-associated AEs was 44 days (IQR 20-97 days), with most occurring within the first 30 days of treatment.

CONCLUSION

This research uncovers critical new safety signals for TFTD/TPI, supporting its clinical monitoring and risk identification.

摘要

目的

本研究的目的是利用美国食品药品监督管理局不良事件报告系统(FAERS)数据库中的数据,仔细审查与曲氟尿苷/替匹嘧啶(TFTD/TPI)相关的不良事件(AE)。

方法

收集2015年第四季度至2023年第四季度与TFTD/TPI相关的AE数据。在对数据进行标准化处理后,使用多种信号量化技术,包括比例报告比(PRR)、报告比值比(ROR)、贝叶斯方法,如贝叶斯置信传播神经网络(BCPNN)和多项目伽马泊松收缩器(MGPS)进行总体和亚组分析,并进行可视化分析。

结果

从FAERS数据库中,我们分析了13520073份报告,确定8331份为TFTD/TPI的主要可疑(PS)AE,发生在27个器官系统中。该研究在四种算法中保留了99个显著不成比例的首选术语(PT),并揭示了缺铁、肠穿孔、肝衰竭、胆管炎等意外的严重AE。TFTD/TPI相关AE的中位发病时间为44天(四分位间距20 - 97天),大多数发生在治疗的前30天内。

结论

本研究揭示了TFTD/TPI重要的新安全信号,支持其临床监测和风险识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de8c/11301057/0270da0b06c2/fphar-15-1399998-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验