Radulescu Aurel
Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich Lichtenbergstraße 1 Garching 85747 Germany.
J Appl Crystallogr. 2024 Jun 27;57(Pt 4):1040-1046. doi: 10.1107/S160057672400493X. eCollection 2024 Aug 1.
For a reliable characterization of materials and systems featuring multiple structural levels, a broad length scale from a few ångström to hundreds of nanometres must be analyzed and an extended range must be covered in X-ray and neutron scattering experiments. For certain samples or effects, it is advantageous to perform such characterization with a single instrument. Neutrons offer the unique advantage of contrast variation and matching by D-labeling, which is of great value in the characterization of natural or synthetic polymers. Some time-of-flight small-angle neutron scattering (TOF-SANS) instruments at neutron spallation sources can cover an extended range by using a broad wavelength band and a multitude of detectors. The detectors are arranged to cover a wide range of scattering angles with a resolution that allows both large-scale morphology and crystalline structure to be resolved simultaneously. However, for such analyses, the SANS instruments at steady-state sources operating in conventional monochromatic pinhole mode rely on additional wide-angle neutron scattering (WANS) detectors. The resolution must be tuned via a system of choppers and a TOF data acquisition option to reliably measure the atomic to mesoscale structures. The KWS-2 SANS diffractometer at Jülich Centre for Neutron Science allows the exploration of a wide range using conventional pinhole and lens focusing modes and an adjustable resolution Δλ/λ between 2 and 20%. This is achieved through the use of a versatile mechanical velocity selector combined with a variable slit opening and rotation frequency chopper. The installation of WANS detectors planned on the instrument required a detailed analysis of the quality of the data measured over a wide angular range with variable resolution. This article presents an assessment of the WANS performance by comparison with a [Willendrup, Farhi & Lefmann (2004). , , E735-E737] simulation of ideal experimental conditions at the instrument.
对于具有多个结构层次的材料和系统进行可靠的表征,必须分析从几埃到数百纳米的宽长度尺度范围,并且在X射线和中子散射实验中必须覆盖扩展范围。对于某些样品或效应,使用单一仪器进行这种表征是有利的。中子具有通过D标记实现对比度变化和匹配的独特优势,这在天然或合成聚合物的表征中具有重要价值。中子散裂源处的一些飞行时间小角中子散射(TOF-SANS)仪器可以通过使用宽波段波长和多个探测器来覆盖扩展范围。探测器的布置使其能够覆盖宽范围的散射角,其分辨率能够同时分辨大规模形态和晶体结构。然而,对于此类分析,以传统单色针孔模式运行的稳态源处的SANS仪器依赖于额外的广角中子散射(WANS)探测器。必须通过斩波器系统和TOF数据采集选项来调整分辨率,以可靠地测量原子尺度到介观尺度的结构。于利希中子科学中心的KWS-2 SANS衍射仪允许使用传统针孔和透镜聚焦模式探索宽范围,并具有2%至20%的可调分辨率Δλ/λ。这是通过使用多功能机械速度选择器结合可变狭缝开口和旋转频率斩波器来实现的。计划在该仪器上安装WANS探测器需要对在可变分辨率下宽角度范围内测量的数据质量进行详细分析。本文通过与[Willendrup, Farhi & Lefmann (2004).,, E735-E737]对该仪器理想实验条件的模拟进行比较,对WANS性能进行了评估。