Suppr超能文献

FP-MAP:一个基于指纹的分子活性预测工具的丰富库。

FP-MAP: an extensive library of fingerprint-based molecular activity prediction tools.

作者信息

Venkatraman Vishwesh

机构信息

Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway.

出版信息

Front Chem. 2023 Aug 15;11:1239467. doi: 10.3389/fchem.2023.1239467. eCollection 2023.

Abstract

Discovering new drugs for disease treatment is challenging, requiring a multidisciplinary effort as well as time, and resources. With a view to improving hit discovery and lead compound identification, machine learning (ML) approaches are being increasingly used in the decision-making process. Although a number of ML-based studies have been published, most studies only report fragments of the wider range of bioactivities wherein each model typically focuses on a particular disease. This study introduces FP-MAP, an extensive atlas of fingerprint-based prediction models that covers a diverse range of activities including neglected tropical diseases (caused by viral, bacterial and parasitic pathogens) as well as other targets implicated in diseases such as Alzheimer's. To arrive at the best predictive models, performance of ≈4,000 classification/regression models were evaluated on different bioactivity data sets using 12 different molecular fingerprints. The best performing models that achieved test set AUC values of 0.62-0.99 have been integrated into an easy-to-use graphical user interface that can be downloaded from https://gitlab.com/vishsoft/fpmap.

摘要

发现用于疾病治疗的新药具有挑战性,需要多学科的努力以及时间和资源。为了改进活性化合物发现和先导化合物鉴定,机器学习(ML)方法在决策过程中得到越来越多的应用。尽管已经发表了许多基于ML的研究,但大多数研究只报告了更广泛生物活性中的片段,其中每个模型通常专注于特定疾病。本研究引入了FP-MAP,这是一个基于指纹的预测模型的广泛图谱,涵盖了多种活性,包括被忽视的热带病(由病毒、细菌和寄生虫病原体引起)以及与阿尔茨海默病等疾病相关的其他靶点。为了获得最佳预测模型,使用12种不同的分子指纹在不同生物活性数据集上评估了约4000个分类/回归模型的性能。实现测试集AUC值为0.62 - 0.99的最佳性能模型已被集成到一个易于使用的图形用户界面中,该界面可从https://gitlab.com/vishsoft/fpmap下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd22/10462816/4ba934f80d89/fchem-11-1239467-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验