Suppr超能文献

无需晶体结构预测材料属性:基于化学计量学的深度表征学习

Predicting materials properties without crystal structure: deep representation learning from stoichiometry.

作者信息

Goodall Rhys E A, Lee Alpha A

机构信息

University of Cambridge, Cavendish Laboratory, Cambridge, UK.

出版信息

Nat Commun. 2020 Dec 8;11(1):6280. doi: 10.1038/s41467-020-19964-7.

Abstract

Machine learning has the potential to accelerate materials discovery by accurately predicting materials properties at a low computational cost. However, the model inputs remain a key stumbling block. Current methods typically use descriptors constructed from knowledge of either the full crystal structure - therefore only applicable to materials with already characterised structures - or structure-agnostic fixed-length representations hand-engineered from the stoichiometry. We develop a machine learning approach that takes only the stoichiometry as input and automatically learns appropriate and systematically improvable descriptors from data. Our key insight is to treat the stoichiometric formula as a dense weighted graph between elements. Compared to the state of the art for structure-agnostic methods, our approach achieves lower errors with less data.

摘要

机器学习有潜力通过以低计算成本准确预测材料特性来加速材料发现。然而,模型输入仍然是一个关键的绊脚石。当前方法通常使用从完整晶体结构知识构建的描述符——因此仅适用于具有已表征结构的材料——或从化学计量学手工设计的与结构无关的固定长度表示。我们开发了一种机器学习方法,该方法仅将化学计量学作为输入,并从数据中自动学习合适且可系统改进的描述符。我们的关键见解是将化学计量式视为元素之间的密集加权图。与无结构方法的现有技术相比,我们的方法在数据较少的情况下实现了更低的误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2182/7722901/002687d38f6e/41467_2020_19964_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验