Skolkovo Institute of Science and Technology, Bolshoy blvd. 30/1, Moscow 121205, Russia.
Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany.
Chaos. 2020 Mar;30(3):033126. doi: 10.1063/1.5128909.
We present the use of modern machine learning approaches to suppress self-sustained collective oscillations typically signaled by ensembles of degenerative neurons in the brain. The proposed hybrid model relies on two major components: an environment of oscillators and a policy-based reinforcement learning block. We report a model-agnostic synchrony control based on proximal policy optimization and two artificial neural networks in an Actor-Critic configuration. A class of physically meaningful reward functions enabling the suppression of collective oscillatory mode is proposed. The synchrony suppression is demonstrated for two models of neuronal populations-for the ensembles of globally coupled limit-cycle Bonhoeffer-van der Pol oscillators and for the bursting Hindmarsh-Rose neurons using rectangular and charge-balanced stimuli.
我们提出了一种使用现代机器学习方法来抑制大脑中退化神经元集合通常发出的自维持集体振荡的方法。所提出的混合模型依赖于两个主要组成部分:振荡器环境和基于策略的强化学习模块。我们报告了一种基于近端策略优化和在 Actor-Critic 配置中的两个人工神经网络的模型不可知同步控制。提出了一类物理意义上的奖励函数,用于抑制集体振荡模式。使用矩形和电荷平衡刺激,针对全局耦合极限环 Bonhoeffer-van der Pol 振荡器集合和爆发性 Hindmarsh-Rose 神经元的两个神经元群体模型,演示了同步抑制。