Suppr超能文献

利用近端航空图像检测细菌性杀真菌藤病

Bacterial-fungicidal vine disease detection with proximal aerial images.

作者信息

Székely Delia Elena, Dobra Darius, Dobre Alexandra Elena, Domşa Victor, Drăghici Bogdan Gabriel, Ileni Tudor-Alexandru, Konievic Robert, Molnár Szilárd, Sucala Paul, Zah Elena, Darabant Adrian Sergiu, Sándor Attila, Tamás Levente

机构信息

Department of Horticultural Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.

Computer Science, Babes Bolyai University, Cluj-Napoca, Romania.

出版信息

Heliyon. 2024 Jul 8;10(14):e34017. doi: 10.1016/j.heliyon.2024.e34017. eCollection 2024 Jul 30.

Abstract

Vine disease detection is considered one of the most crucial components in precision viticulture. It serves as an input for several further modules, including mapping, automatic treatment, and spraying devices. In the last few years, several approaches have been proposed for detecting vine disease based on indoor laboratory conditions or large-scale satellite images integrated with machine learning tools. However, these methods have several limitations, including laboratory-specific conditions or limited visibility into plant-related diseases. To overcome these limitations, this work proposes a low-altitude drone flight approach through which a comprehensive dataset about various vine diseases from a large-scale European dataset is generated. The dataset contains typical diseases such as downy mildew or black rot affecting the large variety of grapes including Muscat of Hamburg, Alphonse Lavallée, Grasă de Cotnari, Rkatsiteli, Napoca, Pinot blanc, Pinot gris, Chambourcin, Fetească regală, Sauvignon blanc, Muscat Ottonel, Merlot, and Seyve-Villard 18402. The dataset contains 10,000 images and more than 100,000 annotated leaves, verified by viticulture specialists. Grape bunches are also annotated for yield estimation. Further, tests were made against state-of-the-art detection methods on this dataset, focusing also on viable solutions on embedded devices, including Android-based phones or Nvidia Jetson boards with GPU. The datasets, as well as the customized embedded models, are available on the project webpage.

摘要

葡萄藤疾病检测被认为是精准葡萄栽培中最关键的组成部分之一。它是几个后续模块的输入,包括绘图、自动处理和喷洒设备。在过去几年中,已经提出了几种基于室内实验室条件或与机器学习工具集成的大规模卫星图像来检测葡萄藤疾病的方法。然而,这些方法有几个局限性,包括特定于实验室的条件或对植物相关疾病的可见性有限。为了克服这些局限性,这项工作提出了一种低空无人机飞行方法,通过该方法从一个大规模的欧洲数据集中生成了一个关于各种葡萄藤疾病的综合数据集。该数据集包含典型疾病,如霜霉病或黑腐病,影响了包括汉堡麝香葡萄、阿尔方斯·拉瓦利葡萄、科特纳里格拉萨葡萄、白羽葡萄、纳波卡葡萄、白比诺葡萄、灰比诺葡萄、尚布尔申葡萄、皇家费泰斯卡葡萄、长相思葡萄、奥托奈麝香葡萄、梅洛葡萄和塞维-维拉德18402葡萄在内的多种葡萄。该数据集包含10000张图像和超过100000个由葡萄栽培专家验证的带注释的叶子。葡萄串也被注释用于产量估计。此外,还针对该数据集上的最新检测方法进行了测试,重点也放在嵌入式设备上的可行解决方案上,包括基于安卓的手机或带有GPU的英伟达 Jetson 开发板。该数据集以及定制的嵌入式模型可在项目网页上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a729/11301173/40d259a003d0/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验