Suppr超能文献

用于优化甘蔗群体预测能力的稀疏测试设计

Sparse testing designs for optimizing predictive ability in sugarcane populations.

作者信息

Garcia-Abadillo Julian, Adunola Paul, Aguilar Fernando Silva, Trujillo-Montenegro Jhon Henry, Riascos John Jaime, Persa Reyna, Isidro Y Sanchez Julio, Jarquín Diego

机构信息

Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain.

Agronomy Department, University of Florida, Gainesville, FL, United States.

出版信息

Front Plant Sci. 2024 Jul 23;15:1400000. doi: 10.3389/fpls.2024.1400000. eCollection 2024.

Abstract

Sugarcane is a crucial crop for sugar and bioenergy production. Saccharose content and total weight are the two main key commercial traits that compose sugarcane's yield. These traits are under complex genetic control and their response patterns are influenced by the genotype-by-environment (G×E) interaction. An efficient breeding of sugarcane demands an accurate assessment of the genotype stability through multi-environment trials (METs), where genotypes are tested/evaluated across different environments. However, phenotyping all genotype-in-environment combinations is often impractical due to cost and limited availability of propagation-materials. This study introduces the sparse testing designs as a viable alternative, leveraging genomic information to predict unobserved combinations through genomic prediction models. This approach was applied to a dataset comprising 186 genotypes across six environments (6×186=1,116 phenotypes). Our study employed three predictive models, including environment, genotype, and genomic markers as main effects, as well as the G×E to predict saccharose accumulation (SA) and tons of cane per hectare (TCH). Calibration sets sizes varying between 72 (6.5%) to 186 (16.7%) of the total number of phenotypes were composed to predict the remaining 930 (83.3%). Additionally, we explored the optimal number of common genotypes across environments for G×E pattern prediction. Results demonstrate that maximum accuracy for SA ( ) and for TCH ( ) was achieved using in training sets few (3) to no common (0) genotype across environments maximizing the number of different genotypes that were tested only once. Significantly, we show that reducing phenotypic records for model calibration has minimal impact on predictive ability, with sets of 12 non-overlapped genotypes per environment (72=12×6) being the most convenient cost-benefit combination.

摘要

甘蔗是制糖和生物能源生产的重要作物。蔗糖含量和总重量是构成甘蔗产量的两个主要关键商业性状。这些性状受复杂的遗传控制,其反应模式受基因型与环境互作(G×E)的影响。甘蔗的高效育种需要通过多环境试验(METs)准确评估基因型稳定性,即在不同环境中对基因型进行测试/评估。然而,由于成本和繁殖材料可用性有限,对所有基因型 - 环境组合进行表型分析通常不切实际。本研究引入稀疏测试设计作为一种可行的替代方法,利用基因组信息通过基因组预测模型预测未观察到的组合。该方法应用于一个包含186个基因型在六个环境中的数据集(6×186 = 1116个表型)。我们的研究采用了三种预测模型,包括环境、基因型和基因组标记作为主要效应,以及G×E来预测蔗糖积累(SA)和每公顷甘蔗吨数(TCH)。校准集大小在总表型数的72(6.5%)至186(16.7%)之间变化,用于预测其余930个(83.3%)。此外,我们探索了跨环境进行G×E模式预测的最佳共同基因型数量。结果表明,对于SA( )和TCH( ),通过在训练集中使用很少(3个)到没有(0个)跨环境的共同基因型,从而最大化仅测试一次的不同基因型数量,可实现最高准确性。值得注意的是,我们表明减少用于模型校准的表型记录对预测能力的影响最小,每个环境12个非重叠基因型的集合(72 = 12×6)是最方便的成本效益组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ac/11300217/bd6c823aaec7/fpls-15-1400000-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验