Suppr超能文献

利用非加性遗传效应提高甘蔗无性系表现的基因组预测。

Improved genomic prediction of clonal performance in sugarcane by exploiting non-additive genetic effects.

机构信息

Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, Carmody Rd., St. Lucia, Brisbane, QLD, 3064067, Australia.

Sugar Research Australia, Mackay, QLD, 4741, Australia.

出版信息

Theor Appl Genet. 2021 Jul;134(7):2235-2252. doi: 10.1007/s00122-021-03822-1. Epub 2021 Apr 26.

Abstract

Non-additive genetic effects seem to play a substantial role in the expression of complex traits in sugarcane. Including non-additive effects in genomic prediction models significantly improves the prediction accuracy of clonal performance. In the recent decade, genetic progress has been slow in sugarcane. One reason might be that non-additive genetic effects contribute substantially to complex traits. Dense marker information provides the opportunity to exploit non-additive effects in genomic prediction. In this study, a series of genomic best linear unbiased prediction (GBLUP) models that account for additive and non-additive effects were assessed to improve the accuracy of clonal prediction. The reproducible kernel Hilbert space model, which captures non-additive genetic effects, was also tested. The models were compared using 3,006 genotyped elite clones measured for cane per hectare (TCH), commercial cane sugar (CCS), and Fibre content. Three forward prediction scenarios were considered to investigate the robustness of genomic prediction. By using a pseudo-diploid parameterization, we found significant non-additive effects that accounted for almost two-thirds of the total genetic variance for TCH. Average heterozygosity also had a major impact on TCH, indicating that directional dominance may be an important source of phenotypic variation for this trait. The extended-GBLUP model improved the prediction accuracies by at least 17% for TCH, but no improvement was observed for CCS and Fibre. Our results imply that non-additive genetic variance is important for complex traits in sugarcane, although further work is required to better understand the variance component partitioning in a highly polyploid context. Genomics-based breeding will likely benefit from exploiting non-additive genetic effects, especially in designing crossing schemes. These findings can help to improve clonal prediction, enabling a more accurate identification of variety candidates for the sugarcane industry.

摘要

非加性遗传效应似乎在甘蔗复杂性状的表达中起着重要作用。在基因组预测模型中加入非加性效应可以显著提高无性系表现的预测准确性。在最近的十年中,甘蔗的遗传进展缓慢。一个原因可能是非加性遗传效应对复杂性状有很大的贡献。密集的标记信息为利用基因组预测中的非加性效应提供了机会。在这项研究中,评估了一系列考虑加性和非加性效应的基因组最佳线性无偏预测(GBLUP)模型,以提高无性系预测的准确性。还测试了可捕捉非加性遗传效应的可重复核希尔伯特空间模型。使用 3006 个经过基因分型的精英无性系,评估了用于公顷蔗产量(TCH)、商业蔗糖分(CCS)和纤维含量的模型。考虑了三个正向预测场景,以研究基因组预测的稳健性。通过使用拟二倍体参数化,我们发现了显著的非加性效应,这些效应几乎占 TCH 总遗传方差的三分之二。平均杂合度对 TCH 也有重大影响,表明定向优势可能是该性状表型变异的一个重要来源。扩展 GBLUP 模型至少提高了 TCH 预测准确性 17%,但对 CCS 和纤维没有观察到改善。我们的结果表明,非加性遗传方差对甘蔗复杂性状很重要,尽管需要进一步工作来更好地了解高度多倍体背景下的方差分量划分。基于基因组学的育种可能受益于利用非加性遗传效应,特别是在设计杂交方案时。这些发现可以帮助提高无性系预测的准确性,使甘蔗产业更准确地识别品种候选者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/486b/8263546/68c990a648db/122_2021_3822_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验