School of Physical Education and Sport, Henan University, Kaifeng, China.
Department of Public Courses, Chongqing Jianzhu College, Chongqing, China.
J Sports Sci. 2024 Jul;42(14):1299-1307. doi: 10.1080/02640414.2024.2388996. Epub 2024 Aug 7.
The purpose of this study was to test whether a machine learning model can accurately predict VO across different exercise intensities by combining muscle oxygen (MO) with heart rate (HR). Twenty young highly trained athletes performed the following tests: a ramp incremental exercise, three submaximal constant intensity exercises, and three severe intensity exhaustive exercises. A Machine Learning model was trained to predict VO, with model inputs including heart rate, MO in the left (LM) and right legs (RM). All models demonstrated equivalent results, with the accuracy of predicting VO at different exercise intensities varying among different models. The LM+RM+HR model performed the best across all intensities, with low bias in predicted VO for all intensity exercises (0.08 ml/kg/min, 95% limits of agreement: -5.64 to 5.81), and a very strong correlation ( = 0.94, < 0.001) with measured VO. Furthermore, the accuracy of predicting VO using LM+HR or RM+HR was higher than using LM+RM, and higher than the accuracy of predicting VO using LM, RM, or HR alone. This study demonstrates the potential of a machine learning model combining MO and HR to predict VO with minimal bias, achieving accurate predictions of VO for different intensity levels of exercise.
本研究旨在测试通过将肌肉氧合(MO)与心率(HR)相结合,机器学习模型是否可以准确预测不同运动强度下的 VO。二十名年轻的高训练有素的运动员进行了以下测试:递增斜坡运动、三种次最大恒强度运动和三种高强度耗竭运动。训练了一个机器学习模型来预测 VO,模型输入包括心率、左腿(LM)和右腿(RM)的 MO。所有模型均得出了等效的结果,不同模型预测不同运动强度下 VO 的准确性存在差异。LM+RM+HR 模型在所有强度下表现最佳,对所有强度运动的预测 VO 均具有低偏差(0.08 ml/kg/min,95% 一致性界限:-5.64 至 5.81),与实测 VO 具有很强的相关性( = 0.94, < 0.001)。此外,使用 LM+HR 或 RM+HR 预测 VO 的准确性高于使用 LM+RM,也高于使用 LM、RM 或 HR 单独预测 VO 的准确性。本研究表明,结合 MO 和 HR 的机器学习模型具有预测 VO 的潜力,可实现最小偏差,能够准确预测不同运动强度水平下的 VO。