Suppr超能文献

运用机器学习分析预测高强度循环运动中的摄氧量动力学。

Prediction of oxygen uptake kinetics during heavy-intensity cycling exercise by machine learning analysis.

机构信息

Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada.

Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada.

出版信息

J Appl Physiol (1985). 2023 Jun 1;134(6):1530-1536. doi: 10.1152/japplphysiol.00148.2023. Epub 2023 May 18.

Abstract

Nonintrusive estimation of oxygen uptake (V̇o) is possible with wearable sensor technology and artificial intelligence. V̇o kinetics have been accurately predicted during moderate exercise using easy-to-obtain sensor inputs. However, V̇o prediction algorithms for higher-intensity exercise with inherent nonlinearities are still being refined. The purpose of this investigation was to test if a machine learning model can accurately predict dynamic V̇o across exercise intensities, including slower V̇O kinetics normally observed during heavy- compared with moderate-intensity exercise. Fifteen young healthy adults (seven females; peak V̇o: 42 ± 5 mL·min·kg) performed three different pseudorandom binary sequence (PRBS) exercise tests ranging in intensity from low-to-moderate, low-to-heavy, and ventilatory threshold-to-heavy work rates. A temporal convolutional network was trained to predict instantaneous V̇o, with model inputs including heart rate, percent heart rate reserve, estimated minute ventilation, breathing frequency, and work rate. Frequency domain analyses between V̇o and work rate were used to evaluate measured and predicted V̇o kinetics. Predicted V̇o had low bias (-0.017 L·min, 95% limits of agreement: [-0.289, 0.254]), and was very strongly correlated ( = 0.974, < 0.001) with the measured V̇o. The extracted indicator of kinetics, mean normalized gain (MNG), was not different between predicted and measured V̇o responses (main effect: = 0.374, η = 0.01), and decreased with increasing exercise intensity (main effect: < 0.001, η = 0.64). Predicted and measured V̇o kinetics indicators were moderately correlated across repeated measurements (MNG:  = 0.680, < 0.001). Therefore, the temporal convolutional network accurately predicted slower V̇o kinetics with increasing exercise intensity, enabling nonintrusive monitoring of cardiorespiratory dynamics across moderate- and heavy-exercise intensities. Machine learning analysis of wearable sensor data with a sequential model, which utilized a receptive field of approximately 3 min to make instantaneous oxygen uptake estimations, accurately predicted oxygen uptake kinetics from moderate through to higher-intensity exercise. This innovation will enable nonintrusive cardiorespiratory monitoring over a wide range of exercise intensities encountered in vigorous training and competitive sports.

摘要

非侵入性的摄氧量(V̇o)估计是可能的,使用可穿戴传感器技术和人工智能。使用易于获得的传感器输入,已经可以在中等强度运动中准确预测 V̇o 动力学。然而,对于具有内在非线性的高强度运动的 V̇o 预测算法仍在不断改进。本研究的目的是测试机器学习模型是否可以准确预测整个运动强度范围内的动态 V̇o,包括在与中等强度相比的高强度运动中通常观察到的较慢的 V̇O 动力学。15 名年轻健康成年人(7 名女性;峰值 V̇o:42±5 mL·min·kg)进行了三种不同的伪随机二进制序列(PRBS)运动测试,强度范围从中等到低、从低到高和从通气阈到高工作率。训练了一个时间卷积网络来预测瞬时 V̇o,模型输入包括心率、心率储备百分比、估计分钟通气量、呼吸频率和工作率。使用频域分析来评估测量和预测的 V̇o 动力学。预测的 V̇o 具有低偏差(-0.017 L·min,95% 置信区间:[-0.289, 0.254]),并且与测量的 V̇o 非常强相关( = 0.974, < 0.001)。提取的动力学指标,平均归一化增益(MNG),在预测和测量的 V̇o 反应之间没有差异(主要效应: = 0.374,η = 0.01),并且随着运动强度的增加而降低(主要效应: < 0.001,η = 0.64)。在重复测量中,预测的和测量的 V̇o 动力学指标中度相关(MNG:  = 0.680, < 0.001)。因此,时间卷积网络可以准确预测随着运动强度增加而变慢的 V̇o 动力学,能够在中等到高强度运动范围内非侵入性地监测心肺动力学。使用顺序模型对可穿戴传感器数据进行机器学习分析,该模型利用大约 3 分钟的感受野来进行即时摄氧量估计,准确地预测了从中等到更高强度运动的摄氧量动力学。这项创新将使在剧烈训练和竞技体育中遇到的广泛运动强度范围内的非侵入性心肺监测成为可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验